
 Via monte Nero, 40/B – 21049 TRADATE (VA) ITALY
 Phone: +39 (0)331841070 Fax:+39 (0)331841950 - e-mail:datexel@datexel.it - www.datexel.it

Pag. 1

Dev9K
User Guide

v. 1.8
Integrated Development Environment to design and debug the applications based on the DAT9000 series controllers.

NOTE: this document is suitable for devices with theese firmware verisons:
95Ax, 95Bx

1. Introduction

1.1 – General Description
1.2 – Minimum system requirements
1.3 – Procedure of installation
1.4 – Dev9K window
1.5 - Terminology

2. Getting started

2.1 – Start a new Project
 2.2 – Save and Load a Project

2.3 - Close a Project
2.4 – Work with the Function Blocks
2.5 – Compile and Error check

3. Internal Registers

3.1 – Internal Registers
3.2 – Type of Data Format
3.3 – Mapping Registers
3.4 – System Registers overview

4. Functions description

4.1 – Function list
4.2 – Functions description

5.Insertion of Tables

5.1 – Insertion of Tables

6. Controller operations

6.1 – Searching of the devices connected
6.2 – Connecting to the Controller
6.3 - Download the Program
6.4 – Debug Mode
6.5 – Release Mode
6.6 – INIT Mode
6.7 - Web Server
6.8 – Scheduler
6.9 – Insertion of variables
6.10 – Graphic Objects

7. Tips and suggestions

7.1 – Ethernet connection

8. Error messages

8.1 – Error messages in the log window and in the status bar
8.2 – Error messages inside the popup windows

9.Troubleshooting

9.1 – Possible causes of fault

INDEX

mailto:datexel@datexel.it
http://www.datexel.it/

Dev9K

Pag. 2<< INDEX

1.1 – GENERAL DESCRIPTION

Dev9K is an Integrated Development Environment running under the Windows® Operative System that allows to design and
debug the applications based on the DAT9000 series control devices. With Dev9K it is possible to set the DAT9000 series
controllers to execute I/O read and write operations (DAT3000 series), mathematical and logic operations and timers. Moreover it
is possible to read and write in real time the Internal Registers of the Controller or connect it directly to the slave devices
connected to its Modbus Master Port.

● Close eventual active or background applications.
● Insert the CD-ROM of installation in the driver.
● Wait for the Autorun window opening.
 If the Autorun function is disabled, open the CD-ROM and execute the installation file at the path:
 <CD Driver>:/doc/download.html
● Click on the Tools button.
● Click on the “download” button in the DAT9000 section.
● Follow the Installation Wizard.

Operative System Windows® 2000 / NT / ME / XP/ Vista / Win 7
Available Hard Disk memory 2 MB

In the Main Window of Dev9K the following components are shown:
● The Menu bar, the Tool bar and the Status bar (Fig.1.1-A)
● The Log window (Fig.1.1-B)
● The Main Program window (Fig.1.1-C)
● The Registers Table (Fig.1.1-D)

D

B

Fig. 1.1

A

C

1. Introduction

1.2 – MINIMUM SYSTEM REQUIREMENTS

1.3 – PROCEDURE OF INSTALLATION

1.4 – DEV9K WINDOW

Dev9K

Pag. 3<< INDEX

Description of terms and abbreviations used in Dev9K and in this manual.

Controller Device of the DAT9000 series.

Integrated Development
Environment Instructions set to create, to debug and to test the Program.
IDE

Program List of functions executed from the Controller.

Function Block Each block constituting the Main Program. Each Function Block can contain a function.
F.B.

Function Logical, mathematical or flow operation executed from the Controller.

Variable Each parameter contained in a function.

Register Position of a variable in the volatile memory of Controller.

Retentive Register Position of a variable in the non-volatile memory of Controller.

Label String of characters used to identify the name of an object (Function Block, Register, Table,...)

1. Introduction

1.5 - TERMINOLOGY

Dev9K

Pag. 4<< INDEX

Click on the “New Project” button (Fig.2.1-A) or select “ Project -> New ” in
the Menu bar.
The following windows will appear:
●“Log”: empty window that will contain the operation performed (Fig.1.1-B).
●“Program”: in this window it is possible to insert the Function Blocks to
generate the Program. For a new Project this window contains a blank
Function Block. (Fig.1.1-C).
●“Registers Table”:contains the list of Controller's Registers (Fig.1.1-D).

2.4 A: INSERT
To set a Function Block it is necessary to activate it, clicking inside the
block: the block is active when its border is highlighted in red .
It is possible to insert a new Function Block before or after the highlighted
block (Fig.2.3-A).
Click on the “Insert Before” button (Fig.2.2-A) to insert a new block between
the highlighted block and the previous .
Click on the “Insert After” button (Fig.2.2-B) to insert a new block between
the highlighted block and the successive.
The new block inserted will be automatically highlighted.
The “Zoom” button (Fig.2.3-B) allows to change the scale of visualization of
the Main Program window reducing the dimensions of the Function Blocks
(Zoom -) or turn back to the standard visualization (Zoom +).

2.4 B: REMOVE
To remove a Function Block, click on the block to select it and then click on
the “Delete” button (Fig.2.2-H).

2.4 C: COPY
To duplicate a Function Block, select the block to be copied and press the
“Copy” button (Fig.2.2-E), then select the destination block and press the
“Paste” button (Fig.2.2-F).

2.4 D: MODIFY
To modify a Function Block, click two times on the block or click on the
block to select it and then click on the “Modify” button (Fig.2.2-G).

The operations described above are also accessible from the menu that
appears clicking the right button of the mouse inside the highlighted
Function block.

2.4 E: MOVE
Click on the “Move Up” button (Fig.2.2-C) to change the position of the active
block and that one that precedes it.
Click on the “Move Down” button (Fig.2.2-D) to change the position of the
active block and that one that follows it.

2.1 – START A NEW PROJECT

To save the Project click on the “Save Project” button (Fig.2.1-C) or select
“ Project -> Save ” or “ Project -> Save As... ” in the Menu bar.
When a Project is saved for the first time, Dev9K requires the file name that
will be used as name for the Project.
It will be created a main file with (.prj) extension and the system files
necessary for the correct working of the device.
To load a Project previously saved click on the “Open Project” button
(Fig.2.1-B) or select “ Project -> Open ” in the Menu bar. It will be loaded the
Program, the name and the types of the Registers and the eventual tables,
display windows and the scheduler objects .

A

Fig. 2.1

B C

2. Getting started

2.2 – SAVE AND LOAD A PROJECT

2.4 – WORK WITH THE FUNCTION BLOCKS

2.3 – CLOSE A PROJECT
To close an existing Project, select “ Project -> Close in the Menu bar.
When Dev9K closes a project, it ask if the user want to save the changes
eventually done.
To close the software Dev9K,select “ Project -> Exit in the Menu bar. It asks
if the user want to save the changes eventually done.

B C DA

Fig. 2.2

E F G H

Fig. 2.3

A

B

Dev9K

Pag. 5<< INDEX

2.4 F: STRUCTURE OF A FUNCTION BLOCK
When the user modifies a Function Block, the “Function Block” window
(Fig.2.4) will be visualized; this allows to set the variables relative to the
Function selected.
The Functions are gathered in specific functional groups: to visualize them,
click on the button relative to a functional group (Fig.2.4-A) in order to
visualize its specific functions (Fig.2.4-B).
Clicking on the button relative to the function to be inserted; it will appear a
menu where it is possible to set the Label and the Variables (Fig.2.4-C)
proper of the selected function.
To define particular variables like Masks or Tables, it is possible to use the
“Set” button to open a window of guided insertion of the value.

At the end, click on the “OK” button (Fig.2.4-D) to insert the function inside
the Main Program window.

In the Main Program window, the following parameters will be visualized:

● Index (Fig.2.5-A): unique number that identifies the position of the block
inside the Program.
● Label (Fig.2.5-B): unique label that identifies the Function Block inside the
Program (used for the functions of the “Flow” functional group, refer to
section “Function description”).
● Symbol (Fig.2.5-C): icon relative to the function to be inserted.
● Variable (Fig.2.5-D): parameter of the Function Block.

Refer to the section “Function description” to know how to insert the
functions.

2.4 G: COPY A FUNCTION BLOCK
To copy a Function Block, select the Function Block to copy clicking on
it,click on the button “Copy” (Fig.2.6-A), create a new Function Block in the
desired point of the Project and than click on the button “Paste” (Fig.2.6-B)
It will be created a Block with the same properties of the original.

When the insertion of the Function Blocks is complete, it is possible to
compile the Program clicking on the “Compile ” button (Fig.2.7).
It will be created a report in the Log window (Fig.2.8) containing the eventual
errors and/or anomalies encountered during the error checking
procedure(Fig.2.8-A).
If the compiling process has a successful conclusion, the Log window will
show the memory resources in use by the Program (Fig.2.8-B).

2.5 – COMPILE AND ERROR CHECK

2. Getting started

NOTE:
It is possible to insert up to 255 function blocks and up to the available
memory capacity (Program Memory).

Fig. 2.4

A

B

C

D

Fig. 2.5

A
B C

D

Fig. 2.8

A

B

BA Fig. 2.6

Fig. 2.7

Dev9K

Pag. 6<< INDEX

Click on the “Watch” button (Fig.3.1) to visualize the Registers Table (Fig.3.2).
To update the Register's value, click on the “Read” button (Fig.3.2-A).
For each Register it is visualized:
● The Register address (Fig.3.2-B)
● The Register name (Fig.3.2-C)
● The value contained into the Register (Fig.3.2-D)
● The Register data format (Fig.3.2-E)

To modify the name or the value of a Register, click two times on the row of
table regarding the Register.
Inside the “Set” window (Fig.3.3) it is possible to set the name (Label) of the
Register (only for the General Purpose Register), to force the value
contained in the Register (only if the Controller is connected) and to set the
type of data format of the Register.

Each General Purpose Register can be read or written using one of the
following data format :

● Uint 16 bit Unsigned Integer (0 ÷ 65535)
● Int 16 bit Signed Integer (-32768 ÷ +32767)
● Ulong 32 bit Unsigned Long (0 ÷ 4,294,967,295)
● Long 32 bit Signed Long (-2,147,483,648 ÷ +2,147,483,647)
● Float 32 bit Floating Point
● Hex 16 bit Unsigned Integer visualized as Hexadecimal

characters (0000 ÷ FFFF)
● ASCII 16 bit Unsigned Integer visualized as ASCII characters
● Bin 16 bit Unsigned Integer visualized as binary code

● K_Flt Floating Point Constant (as decimal)
● K_Long Long Constant (as binary code)

NOTE: the 32 bit Registers request the position of 2 Registers.

3. Internal Registers

3.1 – INTERNAL REGISTERS

3.2 – TYPE OF DATA FORMAT

System Registers: contain the information about the status
Controller.

General Purpose Registers: can be used in the Program to
move the data or to execute calculation functions.

Retentive General Purpose Registers: can be used from the
Program to move the data or to execute calculation functions.
These Registers are saved in Eprom each time their values
change and they are uploaded when the Controller is powered-
on.

The Internal Memory of the Controller is composed of a 16 bit Register
series divided as follows:

%S

%R

Fig. 3.1

Fig. 3.2
AB C D E

Fig. 3.3

Dev9K

Pag. 7<< INDEX

3.3 – MAPPING Register

3. Internal Registers

Device
DAT 9000 DAT 9000-IO DAT 9000-IO/USB DAT 9011 DAT 9011-USB DAT9011-DL DAT 9550

%R0
%R1 Firmw are [0]
%R2 Firmw are [1]
%R3
%R4
%R5
%R6
%R7 Port 1 [Timeout RX]
%R8
%R9

%R10
%R11
%R12
%R13 PC
%R14 Status [0]
%R15 Status [1]
%R16
%R17
%R18
%R19
%R20
%R21

%R22-%R25 RTC RTC
%R26
%R27
%R28
%R29
%R30
%R31
%R32
%R33
%R34

||
%R927
%R928
%R929
%R930
%R931

%R932-933
%R934-935
%R936-937
%R938-939
%R940-959

%R960
||

%R1023
%R1024

||
%R1215
%R1216

||
%R1219

%R1220-1223
%R1224

||
%R1280

Register
--Reserved--

Name [0]
Name [1]

Port 1 [BaudRate]
Node ID

--Reserved--
Digital Inputs Function Keys

Digital Outputs --Reserved--
System Flags
--Reserved--
--Reserved--

COM Errors
Gatew ay Mask [L-H]

Port 0 [Settings]
Port 2 [Settings]
Timers Enable

Time Base Flags
--Reserved-- --Reserved-- --Reserved--

General Purpose

Analog Input 0

General Purpose

Analog Input 1

--Reserved--

Analog Output 0
Analog Output 1
Input Type [1-0]

General Purpose

--Reserved--

Freq input 0

--Reserved--

Freq input 1
Freq input 2

--Reserved--
Freq input 3

Counter input 0
Counter input 1

Counter input 2
--Reserved--

Counter input 3
--Reserved--

General Purpose Memory Registers

General Purpose

Memory Registers

Log Dir

Memory Registers

Dev9K

Pag. 8<< INDEX

Bit

Descr.

Channel

15

-

14

-

13

-

12

-

11

#3

10

#2

09

#1

08

#0

07

-

06

-

05

-

04

-

03

-

02

-

01

-

00

-

Input

DIGITAL INPUTS

Field of 1 read/write Register: contains the status of the Digital Inputs (0 = OFF , 1 = ON).

Bit

Descr.

Channel

15

-

14

-

13

-

12

-

11

-

10

-

09

#1

08

#0

07

-

06

-

05

-

04

-

03

-

02

-

01

-

00

-

Output

DIGITAL OUTPUTS

Field of 1 read/write Register: contains the status of the Digital Outputs and allows to drive directly the Output relays (0 =
OFF , 1 = ON) .

NODE ID

Field of 1 read/write Register: contains the Modbus node address of the device; the addresses allowed are from 1 up to 247.
Each device connected to the same net must have an unique address.

PORT 1 Timeout RX

Field of 1 read/write Register: contains the value of the delay time successive to the reception of the response on the PORT1
Modbus Master; the value is expressed as milliseconds.

3. Internal Registers

BaudRate
1200
2400
4800
9600
19200
38400
57600
115200

Value
0
1
2
3
4
5
6
7

3.4 – SYSTEM REGISTERS OVERVIEW

This paragraph describes the working of the System Registers. Refer to the Registers Mapping relative to the device in use to
find out the position and the type of access to the Register.

FIRMWARE

Field of 2 read only Registers: contains the identifier firmware code provided from the manufacturer.

NAME

Field of 2 read/write Registers (4 bytes or 4 ASCII characters) at the user disposal: it can contain the name of Controller or a
unique code that identifies its function in the plant. Each one of the byte can contain any value from 0 up to 255, the ASCII
characters are included.
The default value of this field contains the identifier of the device in ASCII characters.

PORT 1 Baud Rate

Field of 1 read/write Register used to select the baud rate of the PORT 1 Modbus Master serial port. Set the value in function
of the following table:

Dev9K

Pag. 9<< INDEX

Bit

Descr.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

First address of the Mask Last address of the Mask

Bit

Descr.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Baud Rate Delay (0÷255)

BaudRate
1200
2400
4800
9600
19200
38400
57600
115200

Value
0
1
2
3
4
5
6
7

GATEWAY MASK

Field of 1 read/write Register: contains the range of Modbus addresses which the Controller can send to queries on the
PORT1 Master Port. If is requested to the Controller to send queries to an address out of this range, the command won't be
executed.

PORT 0 Settings

Field of 2 read/write Registers: contain the parameters “Baud-rate” and “delay time” (expressed as milliseconds) of the serial
PORT0 Slave Port. Set the value of the first Register in function of the following table:

3. Internal Registers

Bit

Coil

15

-

14

-

13

-

12

-

11

WE

10

PU

09

-

08

-

07

-

06

-

05

-

04

-

03

-

02

-

01

-

00

-

PowerUp Event
Normal Mode

Reset Occurred

P
0
1

SYSTEM FLAGS

Field of 1 read/write Register: contains the following system flags:
- PowerUp Event : this bit is forced to 1 at each Controller power-on. It is possible to set the value as 0 to monitor eventual
Controller reset events .

PC (Program Counter)

Field of 1 read only Register: shows the position of the instruction (Function Block) executed in the Main Program . The value
0 is the first instruction (Function Block 1).

STATUS

Field of 2 read only Registers reserved for diagnostic operations.

COM ERRORS

Field of 1 read\write Register: is a counter of communication errors on the PORT1 Modbus Master. The value of this Register
is incremented each time that a query is sent on the Master Port and there is not response. This value can be reset.

Watchdog Enable
Watchdog disabled
Watchdog enabled

WE
0
1

Dev9K

Pag. 10<< INDEX

Analogue Input measure (DAT9011 – channel 0 %R26; channel 1 %R27)

Contains the measures of the inputs programmed in the register %R34.

Analogue output values (DAT9011 – channel 0 %R32; channel 1 %R33)

Contain the value to set in Integer format for the two output currents.
Number for 4 mA: 4000; number for 20 mA = 20000

3. Internal Registers

Bit

Descr.

Channel

15

T7

14

T6

13

T5

12

T4

11

T3

10

T2

09

T1

08

T0

07

T15

06

T14

05

T13

04

T12

03

T11

02

T10

01

T9

00

T8

Timers

Bit

RTC[0]

RTC[1]

RTC[2]

RTC[3]

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Seconds [0÷59]

Minutes [0÷59] Hours [0÷23]

Day of week [1÷7] Date [1÷31]

Month [1÷12] Year [0÷99]

TIMERS Enable

Field of 1 read/write Register. Each bit of this Register is associated to an internal Timer. The Timer starts to count when the
associated bit is set as 0; when the parameter “ time” of the Timer Function Block set for the Timer has passed, the Timer
stops to count and the associated bit is automatically forced to 1.

RTC (Real Time Clock/Calendar)

Field of 4 read/write Registers: contain the value of the internal clock.

The following information are available:

Seconds 00 ÷ 59
Minutes 00 ÷ 59
Hours 00 ÷ 23
Day of week 01 ÷ 07 (01=Sunday, 02=Monday, 07=Saturday)
Date 01 ÷ 31 (it depends on the month)
Month 01 ÷ 12 (01=January, 02=February, 12=December)
Year 00 ÷ 99 (00=2000, 99=2099)

NOTE: all of the values are expressed as hexadecimal characters .
NOTICE! Writing these Registers will imply the variation of the clock and calendar settings.

Dev9K

Pag. 11<< INDEX

FREQ [x]

Contains the measure of each digital input's frequency.
The resolution is 0.01Hz.

COUNTER [x]

Contains the pulse counter (32 bit) each digital input.
Each counter is automatically incremented at each rise front of the relative digital input.

DAT9011 Input type programming (%R34)

Contain the programming of the two analogue input channels.
Bit 0-7: programming input channel 0 (universal input).
Bit 8-15: programming input channel 1(Volt – mA input).

INPUT TYPE PROGRAMMING TABLE

Bit

Descr.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Input type channel #1 Input type channel #0

Input
Disabled
100 mV

10 V
20 mA
Tc J
Tc K
Tc R
Tc S
Tc T
Tc B
Tc E
Tc N

Res 600 ohm
Pt100
Pt1K
Ni100
Ni1K
Pot

Res 2Kohm

Value
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Input
Disabled

10 V
20 mA

Value
0
2
3

LOG DIR

Directory where the .CSV files will be located

Bit

Key

Action

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

F4 F3 F2 F1 F4 F3 F2 F1

Pression Latch

FUNCTION KEYS (DAT9550)

Contains the function keys state. Each key is linked to a bit:
Pression: 0 = key actually not pressed, 1 = key actually pressed.
Latch: 0 = the key not yet pressed, 1 = the key has been pressed.

Dev9K

Pag. 12<< INDEX

Functions selection tree, divided per functional group

4.1 – FUNCTION LIST

4. Functions description

COMM

Read
Holding

Read
Input

Write

Read
Device
Write

Device

MOVE

Move

Bitwise

AND (bit)
OR (bit)

XOR (bit)
AND (word)
OR (word)

NOT
POS
NEG

SHIFT

Shift R
Shift L

Rotate R
Rotate L

MATH

Add
Sub
Mult
Div

Scale
SQRT

Average
Linearization

ABS
e^(x)
x^y

XOR (word)

COMP FLOW

GOTO
If (bit) goto

Call
Return

Timers

Timer

Display

Call Page

Trip

A=B
A<>B
A>B
A<B

A>=B
A<=B

Lim (Int)
Lim (Ext)

Block Move

If (bit) call

Clear WDT

Toggle UP
Toggle DOWN

Read Holding Read the Holding Registers from a Modbus slave device

Reads the values of N holding Registers (Modbus function 0x03, Registers 4xxxx) from a Modbus slave
device and writes the values in the selected Internal Registers. In case of missing response or wrong
response by the slave device, the Registers of destination are not updated and the value of the System
Register “COM Errors” is increased.

Variables:

Address Modbus address of the slave device (1÷247)
Register Address of the first Register to read (the mapping Registers starts from 0)
Num Numbers of Registers to read (1÷16)
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction

4.2 – FUNCTIONS DESCRIPTION

Dev9K

Pag. 13<< INDEX

Write Write the Holding Registers of a Modbus slave device

Writes the values of N Internal Registers in N Holding Registers of a Modbus slave device (Modbus function
0x16, Registers 4xxxx). In case of missing response or wrong response by the slave device, the Registers of
destination are not updated and the value of the System Register “COM Errors” is increased.

Variables:

Address Modbus address of the slave device (1÷247)
Register Address of the first Register to write (the mapping Registers starts from 0)
Num Numbers of Registers to write (1÷16)
Source Address of the first Internal Register from which the values to write are withdraw from.
Delay Delay time between the reception of the response and the execution of the next instruction.

Read Device Read the I/O Registers from a Modbus slave DAT3000 series device

Reads the I/O values from a Modbus slave DAT3000 series device and writes the values in the Internal
Registers. The function will generate the proper Modbus command and will process the response.
In case of missing response or wrong response by the slave device, the Registers of destination are not
updated and the value of the System Register “COM Errors” is increased.
Refer to the technical documentation of the DAT3000 series device for the complete description of the I/O
Registers.

Variables:

Device Selection of the DAT3000 series slave device.
Address Modbus address of the slave device (1÷247).
Resource Type of data to read (analog inputs, digital inputs , etc...)
From First Resource to read.
To Last Resource to read.
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction.

4. Functions description

Move Move the value of an Internal Register or Constant in a new Register without to change the original value.

Writes in an Internal Register the value of a Constant (pre-set) or the value of another Register (copy). The
value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).

Variables:

Source Constant or Internal Register from which the value is read.
Dest Internal Register wherein the value is written.

Write Device Write the I/O Registers of a Modbus slave DAT3000 series device

Writes the values of N Internal Registers in the I/O Register of a Modbus slave DAT3000 series device. The
function will generate the proper Modbus command and will process the response. In case of missing
response or wrong response by the slave device, the Registers of destination are not updated and the value of
the System Register “COM Errors” is increased.
Refer to the technical documentation of the DAT3000 series device for the complete description of the I/O
Registers.

Variables:

Device Selection of the DAT3000 series device.
Address Modbus address of the slave device (1÷247)
Resource Type of data to write (analogue outputs, digital outputs, etc...)
From First Resource to write.
To Last Resource to write.
Source Address of the first Internal Register from which the values to write are withdraw from.
Delay Delay time between the reception of the response and the execution of the next instruction.

Dev9K

Pag. 14<< INDEX

And (word) Executes the logical operation “AND” between two values.

Executes the logical operation “AND” between a Register and a constant (mask) or between two Registers.
The value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).
After the execution of the logical operation, only the bits set as 1 in the mask will be forced; the bits set as 0
won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to force one or more bits of
a Register as 0 (in the mask set as 0 the bits to force, set as 1 the other bits).

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B Constant or Internal Register relative to the second operator.
Mask Out Mask applied to the result.
Dest Internal Register wherein the result is written.

Or (word) Executes the logical operation ”OR” between two values.

Executes the logical operation “OR” between a Register and a Constant (mask) or between two Registers.
The value will be converted to the format selected for the destination Register. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).
After the execution of the logical operation only the bits set as 1 in the mask will be forced; the bits set as 0
won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to force one or more bits of
a Register as 1 (in the mask set as 1 the bits to force, set as 0 the other bits).

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B Constant or Internal Register relative to the second operator.
Mask Mask applied to the result.
Dest Internal Register wherein the result is written.

4. Functions description

And (bit) Executes the logical operation “AND” between two bits.

Executes the logical operation “AND” (bit to bit) between a Register and a Constant (mask) or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same (modify the format of the
Register). After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits
set as 0 won't be modified. In case of a 32 bit source Register or Constant (long) and a 16 bit Register of
destination (integer), the most significant bits will be ignored.

Variables:

Source A Constant or Internal Register relative to the first operator.
Mask A Bits of the first operator
Source B Constant or Internal Register relative to the second operator.
Mask A Bits of the second operator
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination.

Xor (word) Executes the logical operation “XOR” (Exclusive Or) between two values.

Executes the logical operation “XOR” between a Register and a constant (mask) or between two Registers.
The value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same (modify the format of the Register).
After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits set as 0
won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to invert (NOT) one or more
bits of a Register (in the mask set as 1 the bits to invert, set as 0 the other bits).

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B Constant or Internal Register relative to the second operator.
Mask Out Mask applied to the result.
Dest Internal Register wherein the result is written.

Dev9K

Pag. 15<< INDEX

Or (bit) Executes the logical operation “OR” between two bits.

Executes the logical operation “OR” (bit to bit) between a Register and a constant (mask) or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same (modify the format of the
Register). After the execution of the logical operation only the bits set as 1 in the mask will be forced; the bits
set as 0 won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of
destination (integer), the most significant bits will be ignored.

Variables:

Source A Constant or Internal Register relative to the first operator.
Mask A Bits of the first operator
Source B Constant or Internal Register relative to the second operator.
Mask A Bits of the second operator
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination.

4. Functions description

Shift R Shift to right the bits of a Register .

Executes the shift of a Register to right: all of the bits are shifted of N positions to right. The most significant
bits will be forced to 0.

Variables:

Source Internal Register containing the value.
N Number of shift to execute.
Dest Internal Register wherein the result is written.

NOT Executes the inversion of one or more bits of a Register.

Executes the inversion of one or more bit of a Register. After the execution of the logical operation will be
forced only the bits set as 1 in the mask; the bits set as 0 won't be modified.

 Variables:

Source Internal Register containing the value.
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination.

XOr (bit) Executes the logical operation “XOR” (Exclusive Or) between two bits.

Executes the logical operation “XOR” (bit to bit) between a Register and a constant (mask) or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same (modify the format of the
Register). After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits
set as 0 won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of
destination (integer), the most significant bits will be ignored.

Variables:

Source A Constant or Internal Register relative to the first operator.
Mask A Bits of the first operator
Source B Constant or Internal Register relative to the second operator.
Mask A Bits of the second operator
Dest Internal Register wherein the result is written.
Mask Out Mask applied to the Register of destination .

Dev9K

Pag. 16<< INDEX

4. Functions description

Shift L Shift to left the bits of a Register.

Executes the shift of a Register to left: all of the bits are shifted of N positions to left. The least significant bits
will be forced to 0.

Variables:

Source Internal Register containing the value.
N Number of shift to execute.
Dest Internal Register wherein the result is written.

Rotate L Rotates to left the bits of a Register.

Executes the rotation of a Register to left: all of the bits are shifted of N positions to left. At each shift the least
significant bit receives the value of the most significant bit.

Variables:

Source Internal Register containing the value
N Number of shift to execute.
Dest Internal Register wherein the result is written.

Rotate R Rotates to right the bits of a Register.

Executes the rotation of a Register to right: all of the bits are shifted of N positions to right. At each shift the
most significant bit receives the value of the least significant bit.

Variables:

Source Internal Register containing the value.
N Number of shift to execute.
Dest Internal Register wherein the result is written.

Dev9K

Pag. 17<< INDEX

Add Calculates the sum of two values

Calculates the sum between an Internal Register and a constant or between two Internal Registers.

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

Sub Calculates the difference of two values

Calculates the difference between an Internal Register and a constant or between two Internal Registers.

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

Mult Calculates the multiplication of two values

Calculates the multiplication between an Internal Register and a constant or between two Internal Registers.

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

4. Functions description

Dev9K

Pag. 18<< INDEX

SQRT Calculates the Square Root of a value

Calculates the Square Root of a value contained in an Internal Register.

Variables:

Source Internal Register containing the value
Dest Internal Register wherein the result is written.

Average Calculates the Arithmetic mean of N values.

Calculates the Arithmetic mean of N Internal Registers values. (sum of the values / N).

Variables:

Source Address of the Internal Register containing the first value.
N Number of Internal Register of which calculate the mean.
Dest Internal Register wherein the result is written.

Linearization Calculates a value in function of a linearization table.

Calculates the Linearization of a value in function of the linearization table selected. Refer to the section
“Table” for more information.

Variables:

Source Internal Register containing the value to linearize.
Function Name of the Linearization table to be followed.
Dest Internal Register wherein the result is written.

Scale Executes the proportional scaling of a value

Executes the proportional scaling between the input range values and the output range values, referring to the
value of an Internal Register.

Variables:

Source Internal Register containing the value to scale.
Span In Maximum value of the input range
Zero In Minimum value of the input range
Dest Internal Register wherein the result is written.
Span Out Maximum value of the output range
Zero Out Minimum value of the output range

Div Calculates the division between two values.

Calculates the division between an Internal Register and a constant or between two Internal Registers.

Variables:

Source A Constant or Internal Register relative to the first operator.
Source B Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.

4. Functions description

Dev9K

Pag. 19<< INDEX

Trip Control of a Trip Alarm

Controls a Trip Alarm with setting of the Trip level, hysteresis and delay time for ON and OFF condition. If the
input value is higher than the high trip level (MAX) for a time longer than Ton, the bits selected in the output
mask will be forced to 1. If the input value is lower than the low trip level (MIN) for a time longer than Toff, the
bits selected in the output mask will be forced to 0.
It is possible to use this Function Block to execute the operation “A>B”: set the trip levels with the same value
and the delay times Ton and Toff = 0.
NOTE: the output status is updated at each execution of the Function after the end of the delay time: it is
suggested to insert this Function Block in a zone of the Program continuously executed.

The graph (Fig.4.1) shows the working of a Trip alarm that goes on if the input signal is higher than 100°C for at
least 2 seconds and goes off if the input signal is lower than 90°C for at least 5 seconds.

Variables:

Input Internal Register containing the value to compare
Max High Trip level
Min Low Trip level
Dest Internal Register wherein the result is written.
Mask Mask applied to the result.
Use Timer Number of Internal Timer to use (0÷15)
Timer On Delay time for Trip Alarm activation (ms)
Timer Off Delay time for Trip Alarm de-activation (ms)

Fig. 4.1

Max

Min

Toff
(5 sec.)

Ton
(2 sec.)

100

90

Output
(dest. bit)

Input

4. Functions description

Dev9K

Pag. 20<< INDEX

Timers Activation of an Internal Timer

Sets an Internal Timer and starts to count. During the count, the bit relative to the Timer selected in the
System Register “Timers Enable”, will be forced to 0. At the end of the count, the bit will be forced to 1.
It is possible to check the status of the bit to determine the end of the time set.

Variables:

Timer Number of the Internal Timer to enable
msec Timer Pre-set (milliseconds)

Goto Unconditioned jump to a Function Block.

Executes an unconditioned jump to a Function Block. The Function Block recalled must have a unique Label.
It is possible to select the Label of the Function Block which jump to, sorting out it between those available in
the list box “Func.Block”. The list is automatically updated each time that the user identifies a new Block; in the
case of the list is empty the value 0 appears.

Variables:

Func.Block Pointer to the Function Block which jump to.

If (bit) Conditioned jump to a Function Block.

Executes a conditioned jump to the Function Block indicated in the variable “Goto if true” if the status of the bit
selected is 1, while if the status of the bit is 0 jumps to the Function Block indicated in the variable “Goto if
false”. All of the Function Blocks called must have a unique Label. It is possible to select the Label of the
Function Block which jump to, sorting out it between those available in the list box “Goto if true” and “Goto if
false” . The lists are automatically updated each time that the user identifies a new Block; in the case of the list
is empty the value 0 appears.

Variables:

Source Internal Register used as reference
Bit Number of the bit to control (0÷15)
Goto if True Pointer to the Function Block which jump to (if Bit=1)
Goto if False Pointer to the Function Block which jump to (if Bit=0)

Call Recall a Subroutine

Executes a jump to the first Function Block of a Subroutine; at the end of the Subroutine (command “Return”),
the Function Block successive to the block “Call” will be executed. The Function Block recalled must have a
unique Label. It is possible to select the Label of the Function Block which jump to, sorting out it between
those available in the list box “Func.Block”. The list is automatically updated each time that the user identifies
a new Block; in the case of the list is empty the value 0 appears.
NOTE: for each block “Call” must correspond a block “Return”, otherwise it is possible to occur in a “Stack
Overflow” error (refer to the section Troubleshooting).

Variables:

Func.Block Pointer to the Function Block which jump to

Return Return from a Subroutine

Indicates the end of a Subroutine. The Program will return to the Block following the Function Block “Call”.
NOTE: for each block “Return” must correspond a block “Call”, otherwise it is possible to occur in a “Stack
Overflow” error (refer to the section Troubleshooting).

4. Functions description

Dev9K

Pag. 21<< INDEX

5.1 – INSERTION OF TABLES

5. Insertion of Tables

To insert the linearization tables, it is necessary to open the proper window
selecting “Tools -> Tables” in the Menu bar (Fig.5.1) .
To upload the points of a table from a file, click on the “Load from File”
button (Fig.5.1-A); the parameters relative to the table like the name, the
number of points and the input and output values for each point will be
loaded.
Each table must be associated to a unique name that identifies the table
inside the Program when the user recall it: to modify the name, click on the
text box “Name” (Fig.5.1-B) and write the new name or select one between
those existing.
The number of points (32 max.) defines the steps of linearization applied to
a variable.
To modify it click on the text box “N points” (Fig.5.1-C) and write the new
value: the window will be automatically updated.
Each point is defined by the input and output values. The input values must
be inserted in increasing order, while the output values can be inserted both
in increasing and decreasing order.
The example (Fig.5.1-D) shows how to create an 8 points table to linearize a
RTD temperature sensor and to obtain the conversion Ohm/°C (Fig.5.2) .

Fig. 5.1

A

B

C

D

E F G

When the insertion of points is complete, it is possible to save the table in a
file, clicking on the “Save to File” button (Fig.5.1-E); by this command the
name of the table, the number of points and the input and output values per
each points will be saved.

To insert the table inside the Program, click on the “>>” button (Fig.5.1-F).
The “Table List” will be updated with the name of the table just inserted and
shows the tables available for the Program. To turn back to the Function
Block window, click on the “OK” button.
Select the Internal Register which the linearization curve will be associated
to and click on the “OK” button to turn back to the Main Program window.
When the Function Block is recalled by the Program, the Controller
executes a control between the value contained into the Internal Register
and the points of the selected table and calculates by interpolation the
output value.
In the example (Fig.5.1-D) for an input value of 1789 Ohm, will be calculated
an output of 35 °C.

°C Ohm
0 1000
15 1145.6
20 1367.3
25 1532.7
30 1673.4
40 1904.5
50 1966.3
60 2000

Fig. 5.2

800 1000 1200 1400 1600 1800 2000 2200
0

10

20

30

40

50

60

70

Ohm

°C Ohm / °C characteristic Example of table
provided from the
manufacturer of the
sensor :

Dev9K

Pag. 22<< INDEX

Open the window “Settings” (Fig.6.2) selecting “Settings -> Controller” in the
Menu bar.
Set the following parameters:
Node ID : Modbus node address (1 ÷ 247)
Channel : Communication Interface (Ethernet or serial port)
IP Address : Controller IP address
Port : Modbus/TCP socket reserver port (502 for direct
connection)
Timeout : Receiving Timeout for TCP commands
To confirm, click on the “OK” button.

Click on the “Connect” button (Fig.6.3-A): if the connection ends correctly, the
message “Connected” will be visualized in the Status bar Fig.6.3-B) and in
the Log window (Fig.6.4); in case of error, refer to the section
“Troubleshooting” to solve the problem.
From this moment all of the reading, writing, Programming and debugging
operations will be sent only to the selected Controller.
If the user have to change the Controller, it is necessary to disconnect the
Controller in use, click on the “Disconnect” button (Fig.6.3-C), modify the
parameters in the “Settings” window and then click on the “Connect” button
to communicate with the new Controller.

6. Controller operations

6.2 – CONNECTING TO THE CONTROLLER

6.1 – SEARCHING OF THE DEVICES CONNECTED
Connect the Controller to the Ethernet network and power-on it (refer to the
data-sheet).
Open the window “Search” (Fig.6.1) selecting “Tools -> Search” in the Menu
bar. In this window it is possible to select the type of Controller to search
(Fig.6.1-A) and to set the receiving Time-out (time over which the device is
intended as not connected)- Fig.6.1-B.
When the options have been selected, click on the “Search” button (Fig.6.1-
C) to start the search. If necessary it is possible to interrupt the search
clicking on the “Stop” button.
When a Controller compatible with the type selected is recognized, it is
visualized in the Ethernet list (Fig.6.1-D), wherein it is possible to read the IP
address , the MAC address and the Modbus node of the device.
At the end of the search, it is possible to select one of the Controllers
detected clicking on its name and set it as default Controller, clicking on the
name by the right button of the mouse and selecting the “Set as Controller”
option; after this operation,the connection to the Controller will be
automatically executed. Refer to the next paragraph to set the Controller
manually.

When the Program is complete and if the compiling ends correctly it is
possible to download it in the RAM memory of Controller. To do it, open the
“Download” window (Fig.6.6). clicking on the “Download” button (Fig.6.5-A).
The Download operations are allowed only in “Debug” modality (refer to the
section “Debug Modality”).
Inside the “Download” window it is possible to set one or more options:
● “Download Program” (Fig.6.6-A) – Starts to download the Program in the
RAM memory of Controller.
● “Verify” (Fig.6.6-B) – Compares the Program contained in the RAM memory
with the compiled Program.
● “Save in Flash” (Fig.6.6-C) – Transfers the Program loaded in the RAM
memory to the Internal Flash Memory of the Controller.
● “Clear Register Memory” (Fig.6.6-D) – Resets the value of the Controller's
General Purpose Internal Registers .
● “Run After Download” (Fig.6.6-E) – At the end of the download, sets the
Controller in “Run” modality (execution of the Program). Fig. 6.6

6.3 – DOWNLOAD THE PROGRAM
Fig. 6.4

A

Fig. 6.3
B

Fig. 6.2

Fig. 6.1

A

B

C

D

Fig. 6.5

A

Fig. 6.6

A
B
C

D

Dev9K

Pag. 23<< INDEX

By this modality it is possible to follow the Program flow and to monitor in
real time the Controller's status and the value of the Internal Registers.
When the Program is interrupted the Register Table is updated to the last
reading.
During the development of the Program, if the Controller is connected, click
on the “Debug” button (Fig.6.7-A) to activate the “Debug” modality.
In the Status bar the message “Debug Mode” (Fig.6.7-B) will be visualized
and in the Tool bar will be activated the commands to execute the following
debug operations:
● “Run” (Fig.6.7-C) – Executes the Program continuously.
● “Run To Break” (Fig.6.7-D) – Executes the Program up to the Break point .
● “Pause” (Fig.6.7-E) – Interrupts the execution of the Program (“Run”
condition) / executes the Program step by step (“Stop” condition)
● “Animate” (Fig.6.7-F) – Simulates the evolution of the Program flow
executing it step by step.
● “Stop” (Fig.6.7-G) – Blocks the Program and reset it to the first Function
Block.

The Function Block in execution is identified by the Index parameter
coloured in red and is updated the PC (”Program Counter”) value (Fig.6.8-A).
Open the “Settings” window (Fig.6.9), selecting “Settings -> Workspace” to
set the following options for the Debug modality:
● “Run-Time Register Update” (Fig.6.9-A) – If active, in “Run” condition the
table Register will be automatically updated (1 read per second)
● “Animate Time” (Fig.6.9-B) – Setting of the playing time between one step
and the successive in the “Animate” condition.

After the phases of development and Debug it is possible to proceed with
the “Release” modality, clicking on the “Release” button (Fig.6.10-A).
In the Status bar the message “Release Mode” (Fig.6.10 -B) will be visualized
and in the Tool bar the commands relative to the operations of Debug and
Download will be disabled.
In the “Release” Modality, at the power-on, the Controller will be
automatically set in “Run” condition, loading in the RAM memory the
Program saved in the Internal Flash memory.
In this modality it is possible to read and write the Internal Registers.

IMPORTANT:
In “Debug” modality, at the power-on the Controller will be

automatically set in “Stop” condition without load and execute the
Program. For such reason, at the end of the Debug operations, set the
Controller in “Release” modality.

In “INIT” modality is not possible to execute the Program (Run)
and the Debug functions are disabled but it is allowed to download the
Program, to read and write the Internal Registers and the Gateway
function is enabled.

6.4 – DEBUG MODE

6.5 – RELEASE MODE

6.6 – INIT MODE

The “INIT” modality can be used in case of fortuitous loss of configuration
to set the Controller in the default condition in order to recover the desired
configuration. In this modality the value of the following parameters of the
controller will be automatically set independently of the configuration saved
in Eprom.
● IP Address Value assigned automatically from the network by

a DHCP server
● Modbus Node 0x0Ah (10)
● PORT 0 (Slave) Baud-rate = 9600 bps

In this modality is not possible to execute the Program (Run) and the
Debug functions are disabled but it is allowed to download the Program, to
read and write the Internal Registers and the Gateway function is enabled.

6. Controller operations

Fig. 6.6

A C D E F G

B

Fig. 6.7

A

Fig. 6.8

A

B

Fig. 6.9B

A

Dev9K

Pag. 24<< INDEX

6.7 – WEB SERVER

By Web Browser it is possible to get the access to the Controller's Web
Server in order to visualize the Web pages containing the data about the
configuration and to download the log files.

To connect to the Web pages, it is necessary to write in the Address bar of
the Browser in use the IP address of the controller which access to.
The following example shows how to connect to the Web page Index of a
Controller with IP address = 192.168.1.100

Address bar text:
http://192.168.1.100

At the first access, to logon to the configuration pages, will be requested
user name and password (Fig.6.10).

Default Password :
User name = “ Fact_user ”
Password = “ Fact_pwd ”

On the page Maintenance (Fig.6.11) it is possible to access to the following
pages:

Network
Allow to modify the TCP side settings (IP address, Subnet mask,
Gateway, DNS). Click on “Update” to save the changes.
Please note: the controller will be restarted.
Press the “Return” button to go back to the Home page.

Mail
Allow to modify the Email sending parameters:

From : name of the sender
To : email address of the recipient
Cc : email address of the other recipients
Subject : message subject
Body : message contents
SMTP server : outgoing server address
SMTP port : outgoing server port (if required)
User and Password (if required)

Click on “Update” to save the changes.
Press the “Return” button to go back to the Home page.
Press the “Test” button to send a try message; wait for a few seconds
and press “Refresh”: the field “Last mail result” will show the result of the
try (“Good” means that the email were be successful sent).

DDNS
Allow to modify the parameters of the Dynamic DNS service, to connect
to a remote device with dynamic IP. It needs the registration to the
DynDns service www.dyndns.com.

Advanced
Shows the fatory parameters of the device.

User & Password
Allow to modify user name and password for the access to the web
pages.

In the page Download (Fig.6.12) it is possible to read the directory of the
USB memory storage and to download the .CSV files with the DataLogger
data.

Press the Logout button to terminate the session. Each session will expire
after 5 minutes of inactivity.

6. Controller operations

Fig. 6.10

Fig. 6.11

Fig. 6.12

http://192.168.1.100/
http://www.dyndns.com/

Dev9K

Pag. 25<< INDEX

6.8 – SCHEDULER (Data Logger)

The scheduler allows to manage up to 8 tasks of recording at the same
time (data-logger).
The data will be saved on the microSD card in .CSV format; it is possible to
get access to all of the files contained in the memory card by the page
“sdcard.htm” of Web Server.

Open the “Scheduler” window (Fig.6.14), selecting “Tools -> Scheduler”
(Fig.6.13) to insert the tasks relative to the data-logger.

To insert the “Logger” object, click on the “Logger” button (Fig.6.15A) and
then click on the “Insert Object” button (Fig.6.15B) . The “Logger” text will
appear inside the “Task List” (Fig.6.15C) .

For each task it is possible to set:
- Lifetime (Fig.6.16A): indicate the period of validity of the task, that is active
only in the period of time included in these parameters.
- Directory of destination (Fig.6.16B): indicates the directory inside which the
files of the current task will be created. If the directory doesn't exist, it will
be automatically created.
- File generation options (Fig.6.16C): the current file will be closed and a new
file will be created in function of the parameter of time selected (hour, day,
month and year). To the new file generated will be assigned a name in
function of the date and time when it has been created (ex: a file created
the day May 8th 2010 at the 14.00 will be named as “08051014.csv”).
- Recording Time (Fig.6.16D): if the “Time” option is set, a record of data will
be saved at regular intervals each time that the selected period is expired.
- Recording Trigger (Fig.6.16E): if the “Trigger” option is set, a record of data
will be saved at the variation (rising or falling edge) of the bit indicated.
- Record format (Fig.6.16F): the indicated values will be used to create the
fields that compose the record of data.
It is possible to insert the following parameters:

- Event type : identifier number for the event that enabled the
saving of the record of data (2 = trigger (rising edge of bit) ;

 4 = trigger (falling edge of bit) ; 128= recording time.
- dd/mm/yy : date;
- hh:mm:ss : time;
- Var[n] : value of the variable n (register).

To modify the format of the variables click on the “Set Formats” button
(Fig.6.16G) (refer to the section “Insertion of Variables”.

To confirm the task settings, click on the “Apply” button (Fig.6.16H).

6.9 –INSERTION OF VARIABLES

By this window (Fig.6.17) it is possible to indicate which registers will be
available for the data-logger functions. For each register must be specified
the number of the register (Fig.6.17A), the format type of the register
(Fig.6.17B), the numeric format (Fig.6.17C) and an eventual label of description
(Fig.6.17D).
To confirm the modifies of the register properties click on the “Set” button
(Fig.6.17E).
To scroll up or down the register list click on the “Up” or “Down” buttons
(Fig.6.17J).
To add or remove a register click on the “+” or “-” buttons (Fig.6.17I).
When all the registers have been inserted, click on the “Write” button
(Fig.6.17G) to save the data inside the Controller.
To modify the values it will be possible to reload the project or read them
directly from the Controller clicking on “Update” button (Fig.6.17F) .
To close this window click on the “OK” button (Fig.6.17H) .

6. Controller operations

IMPORTANT:
The device doesn't execute automatically the change to the Daylight
Saving Time (DST).

Fig. 6.14

Fig. 6.15

A
B

C

Fig. 6.16

A

B

C

D

E

F

HG

Fig. 6.17

A
B

D

F

G

E

J
I

C

Dev9K

Pag. 26<< INDEX

6.10 – GRAPHIC OBJECTS

6.10A: WINDOW STRUCTURE
This menu of configuration must used only to program the graphic display.
To open the “Display” window select in the Menu Bar “Tools -> Display”
The window is composed of:
-a graphic preview of the display (Fig.6.18-A) that allows to the user to visualize the position and the structure of the objects
inserted;
-a group of operational buttons to work on the structure of the graphics pages (Fig.6.18-B);
-a group of operational buttons to work on the graphics object (Fig.6.18-C);
-a window to show the properties of the single graphic object (Fig.6.18-D);
-a button to compile the graphic pages (Fig.6.18-D).

A

C

D

B

E

6.10B: GRAPHICS OBJECTS

By the “Display” window it is possible to create and set the visualisation of the following objects:

-page: area of visualization of the objects.
-dynamic texts: strings of 11 alphanumerical characters length depending on the logic state of a selectable bit of a internal
register; it is possible to visualize the characters that belong to the standard ASCII table (not extended). Note: for the character
“°”, use the character “^”.
-internal register's numerical value: visualization, in a format defined by the user, of the value of an Internal register.
-date : visualization, for the models where foreseen, of the date;
-time : visualization, for the models where foreseen, of the time;
-progress bar: value of filling proportional to the value of an internal register;
-geometric figures: creation and visualization of rectangles;
-pictures: creation and visualization of pictures where the filling condition depends of the logic state of the bit of a single register.

6. Controller operations

Dev9K

Pag. 27<< INDEX

6.10C: CREATE THE DISPLAY WINDOW
Work on the graphic pages (Ref Fig.6.19).
To insert a graphic page click on the button “Insert page” (Fig.6.19A) ; to the
page created will be assigned a progressive identification number and the
page will appear in the list of the existing pages. In the list the page
selected will be highlighted in blue (Fig.6.19E). In case of creation of several
pages it is possible to use the scrolling buttons “Page Up” (Fig.6.19C) and
“Page Down” (Fig.6.19D) to move into the list and select the desired page; the
page preview will be updated in function of the page selected. To delete a
page click on the button “Delete page” (Fig.6.19B).

Work on the graphic objects(Ref Fig.6.20).
- Dynamic texts.
To insert the object “Dynamic text”, click on the button “Label” (Fig.6.20A)
followed by the button “Insert Object” (Fig.6.20H) . Inside the “List Object ”
(Fig.6.20L) will appear the text “New Label”.
- Internal register numerical value.
To insert the object “Numerical value”, click on the button “Number”
(Fig.6.20B) followed by the button “Insert Object” (Fig.6.20H) . Inside the “List
Object ” (Fig.6.20L) will appear the text “%R26”.
- Date.
To insert the object “Date”, click on the button “Date” (Fig.6.20C) followed by
the button “Insert Object” (Fig.6.20H) .Inside the “List Object ” (Fig.6.20L) will
appear the text “dd/mm/yy”.
- Time.
To insert the object “Time”, click on the button “Time” (Fig.6.20D) followed by
the button “Insert Object” (Fig.6.20H) .Inside the “List Object ” (Fig.6.20L) will
appear the text “hh/mm/ss”.
- Progress bar.
To insert the object “Progress bar”, click on the button “Progress bar”
(Fig.6.20E) followed by the button “Insert Object” (Fig.6.20H) .Inside the “List
Object ” (Fig.6.20L) will appear the text “ProgBar”.
- Rectangle.
To insert the object “Rectangle”, click on the button “Rectangle” (Fig.6.20F)
followed by the button “Insert Object” (Fig.6.20H) .Inside the “List Object ”
(Fig.6.20L) will appear the text “Rect”.
- Picture.
To insert the object “Picture”, click on the button “Picture” (Fig.6.20G)
followed by the button “Insert Object” (Fig.6.20H) .Inside the “List Object ”
(Fig.6.20L) will appear the text “Picture”.
The object inserted will be highlighted in blue inside the “List Object ”.
Use the scrolling buttons “Scroll Up” and “Scroll Down” (Fig.6.20I) to move
inside the “List Object ” and to select the desired object . In function of the
object selected the “Object properties” will be updated.
To delete an object, select the object inside the “List Object” and click on
the button “Delete Object” (Fig.6.20J) .
To execute the refresh of the page preview click on the button “Redraw”
(Fig.6.20K).

“Properties of the graphic objects” Window (Ref Fig.6.21).
Inside the Display window, each object is defined by specific properties.
The button “Edit”(Fig.6.21F) updates the object with the modifies applied to
everyone of the properties listed below. In case of modify of such properties
and missed clicking of the button “Edit”, the modify won't have effect.
- Dynamic texts.
Format (Fig.6.21A).
Allows to set the size of visualization of the character in three sizes:
Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Reg (Fig.6.21B).
Allows to set the Internal Register that contains the bit which the
visualization of the dynamic text is connected to.
Bit (Fig.6.21C). Allows to set the bit of the Internal register “Reg” which the
visualization of the dynamic text is connected to.
Position (Fig.6.21D).
Defines the coordinates, expressed as pixel, of the dynamic text's position
inside the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction (Fig.6.21D).
Defines the orientation (horizontal or vertical) of the dynamic text inside the
graphic page.

6. Controller operations

Fig. 6.19

A B

C D

E

Fig. 6.20

Fig. 6.21

A

B C

D

E

F

Fig. 6.20

A

B

C
E

G

D

F

G

H

I

J
K

L

E

Dev9K

Pag. 28<< INDEX

Fig. 6.22

A

B C

D

E

F

Fig. 6.23

A

B

C

D

Fig. 6.24

A

B

C

D

6. Controller operations

Mode(Fig.6.21D).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page.
Label(Fig.6.21E).
Allows to insert the string of alphanumerical characters (11 max.) that will
be visualized if the logic state of the reference bit is 0. If the option flag
“Alternative” is not enabled it is possible to insert a fixed string of 22
alphanumerical characters length.
Alternative(Fig.6.21E).
Allows to insert the string of alphanumerical characters (11 max.) that will
be visualized if the logic state of the reference bit is 1.
If the option flag “Alternative” is not enabled, this parameter has not effect.
Button “Edit” (Fig.6.21F).
- Numerical values of the Internal Registers.
Format (Fig.6.22A).
Allows to set the size of visualization of the object in three sizes:
Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Reg (Fig.6.22B).
Allows to set the Internal Register of which the value is visualized .
Type (Fig.6.22C). Allows to set the format of the Internal Register's value to
visualize.
Position(Fig.6.22D).
Defines the coordinates, expressed as pixel, of the object's position inside
the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction (Fig.6.22D).
Defines the orientation (horizontal or vertical) of the object inside the
graphic page.
Mode(Fig.6.22D).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page.
Label(Fig.6.22E).
Defines the format of visualization of the value: the number on the left and
right of the decimal point indicates how the measure will be visualized
Button “Edit” (Fig.6.22F).
- Date.
Format (Fig.6.23A).
Allows to set the size of visualization of the object in three sizes:
Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Position(Fig.6.23B).
Defines the coordinates, expressed as pixel, of the object's position inside
the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction(Fig.6.23B).
Defines the orientation (horizontal or vertical) of the object inside the
graphic page.
Mode(Fig.6.23B).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page.
Label(Fig.6.23C).
Indicates the format of visualization of the date (days/months/years).
Button “Edit” (Fig.6.23D).
- Time.
Format (Fig.6.24A).
Allows to set the size of visualization of the object in three sizes:
Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Position(Fig.6.24B).
Defines the coordinates, expressed as pixel, of the object's position inside
the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction(Fig.6.24B).
Defines the orientation (horizontal or vertical) of the object inside the
graphic page.
Mode(Fig.6.24B).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page
Label(Fig.6.24C).
Indicates the format of visualization of the time (hours/minutes/seconds).
Button “Edit” (Fig.6.24D).

Dev9K

Pag. 29<< INDEX

- Progress bar.
Reg (Fig.6.25A).
Allows to set the Internal Register which is connected the filling ratio of the
bar.
Type (Fig.6.25B).
Allows to set the format of the Internal Register's value
Position(Fig.6.25C).
Defines the coordinates, expressed as pixel, of the object's position inside
the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction(Fig.6.25C).
Defines the orientation (horizontal or vertical) of the object inside the
graphic page.
Mode(Fig.6.25C).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page.
Dimensions(Fig.6.25D).
Defines the dimensions (length x width), expressed as pixel, of the object.
Filling constant (Fig.6.25E).
Defines the values of the Internal Register selected to which are connected
the events of Start (MIN) and Stop (MAX) of filling of the bar .
Button “Edit”(Fig.6.25F).

- Rectangle.
Position(Fig.6.26A).
Defines the coordinates, expressed as pixel, of the object's position inside
the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction(Fig.6.26A).
Defines the orientation (horizontal or vertical) of the object inside the
graphic page.
Mode(Fig.6.26A).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page.
Dimensions(Fig.6.26B).
Defines the dimensions (length, width and line width), expressed as pixel, of
the object.
Button “Edit”(Fig.6.26C).

- Picture.
Format (Fig.6.27A).
Allows to set the size of visualization of the object in three sizes:
Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Reg (Fig.6.27B).
Allows to set the Internal Register which is connected the visualization of
the picture.
Bit (Fig.6.27C).
Allows to set the bit of the Internal register “Reg” which the visualization of
the picture is connected to.
Position(Fig.6.27D).
Defines the coordinates, expressed as pixel, of the object's position inside
the graphic pages (X(horizontal) 0 up to 131;Y(vertical) 0 up to 31).
The point of origin (0,0) is on the top left corner of the window.
Direction(Fig.6.27D).
Defines the orientation (horizontal or vertical) of the object inside the
graphic page.
Mode(Fig.6.27D).
Defines the visualization of the object as direct or reverse than to the
background of the graphic page.
Picture 0 (Fig.6.27E).
Indicates how the picture will be visualized if the logic state of the reference
bit is 0.
Picture 1 (Fig.6.27F).
Indicates how the picture will be visualized if the logic state of the reference
bit is 1.
Button “Edit”(Fig.6.27G).

Fig. 6.25

A
B

C

D

E

F

Fig. 6.26

Fig. 6.27

A

B

C

A

B C

D

E

F

G

6. Controller operations

Dev9K

Pag. 30<< INDEX

7.1 – ETHERNET CONNECTION

On the Ethernet side, the Controller works like a Server, therefore for the
connection to the LAN network it is necessary to follow the standards for
the Ethernet connections. Hereafter are reported some practical tips to
connect the Controller .

To connect the Controller directly to a PC, use a crossover cable.
To connect the Controller to an Hub, Switch or Router, use a direct cable.

Due to their settings, it could happen that some Firewalls won't allow the
communication with the Controller; this kind of problem could happen
particularly in phase of Search: in case of communication problems it is
suggested, if it possible, to disable eventual active Firewalls on the Client
PC or Router.

If the DHCP service (Dynamic Host Communication Protocol) is not in
use, be sure that the IP, the Subnet Mask and the Gateway address of the
Controller will be compatible with the settings of the LAN network which the
Controller is connected to.

7. Tips and suggestions

Dev9K

Pag. 31<< INDEX

8.1 –ERROR MESSAGES IN THE LOG WINDOW AND IN THE STATUS BAR

8. Error messages

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

“Not Connected”. -The Controller is not connected.
-The communication channel selected
 has not been enabled.

-Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

 “Com Error”. -Wrong setting of the Ethernet port's
 communication parameters.
-Wrong setting of the Slave port's
 communication parameters.
-Wrong command addressing on the
 Master port.

 -Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

-Verify in the “Config” menù :
 -Modbus node ID of the device.
 -Baud rate.
- Delay of receiving (Slave port)

If the parameters have been correctly set
check the connection of the device

 “Com Timeout”. -With communication channel configured,
indicates a missing reception of the
response by the device.
-Wrong communication parameters.

 -Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

“Label error”. -One or more errors occur inside a
Function Block when the Program is
compiled,downloaded or verified.

-Check the parameters of the Function
Block identified by the index number
visualized inside the log window. (refer to
the sections 2.3 and 4.2).

Dev9K

Pag. 32<< INDEX

8.2 – ERROR MESSAGES INSIDE THE POP-UP WINDOWS

“Controller not connected”.

“Timeout”. -The response provided by the Controller
 is not correct and the communication has
 been interrupted.

“Wrong response (function)”. - The Modbus slave device asked by the
 Controller doesn't provide a correct
 response.

-Verify in the “Config” menù :
 -Modbus node ID of the device.
 -Baud rate set for the Slave device.
- Delay of receiving (Slave port)
- Stop bit, Parity type.
- Number of the registers read or written.
 -Modbus function code transmitted.
- Delay of receiving (Master port)

“Check values”. - One or more parameters of a Function
 Block are not correct; this error occur
 when the user clicks on the “OK” at the
 moment to insert the Function Block in
 the Program.

-Check the parameters of the Function
 Block: for the functions of external
 reading and writing, refer to the User
 Guide of the Slave device in use.

8. Error messages

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

-The Controller is not connected.
-The communication channel selected
 has not been enabled.

-Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

 -Verify in the “Settings” menù :
 for Ethernet port:
 -IP address
 -Port number reserved to the Modbus
 TCP socket (Port)
 -Time out value.
 -Modbus node ID of the device.
 for serial port (COM):
 -COM port number.
 -Baud rate.
 -Modbus node ID of the device.

-Verify in the “Config” menù :
 -Modbus node ID of the device.
 -Baud rate.
- Delay of receiving (Slave port)

If the parameters have been correctly set
check the connection of the device

Dev9K

Pag. 33<< INDEX

9.Troubleshooting

9.1 – POSSIBLE CAUSES OF FAULT

Is not possible to power-on the
Controller.

-The Controller is not correctly powered.
-The value of the power supply value is
 lower than the specifications limits.

-Refer to the data-sheet of the Controller
 in use and verify the relative Technical
 Specifications.

There is not communication between
the Host PC and the Controller.

-Ethernet port not correctly connected.
-Modbus Slave port not correctly
 connected.
-Eventual interface between PC and
 Controller not correctly connected.
-Wrong communication parameters.

-Refer to the section 7.1
-Refer to the data-sheets of the Controller
 and the Interface device in use.
-Refer to the section 8.1 .

There is not communication between
the Controller and one or more
Modbus slave devices.

-Modbus Master port not correctly
 connected.
-The slave device is not correctly powered.
-The slave device is not correctly
 connected on the RS-485 serial line.
-Wrong communication parameters.
-The Modbus addresses of the slave
 devices connected are not included in the
 range set in the System Register %S17
 (Gateway Mask) .

-Refer to the section 8.1
-Refer to the data-sheets of the Controller
 and the Slave devices in use.
-Slave device in INIT condition and Baud-
 rate of communication different of 9600
 bps.
-Verify the values of Gateway Mask.

The Program is not correctly executed
or it is impossible to execute the
Program.

-Wrong communication parameters.
-The Controller is in “Debug” modality and
 in Halt, Stop or Break Point condition.
-Wrong data-format of the Registers.
-Wrong parameters of the Function Block.
-Controller in Stack Overflow condition.
-Parameters of the eventual Slave
 devices connected not correctly inserted.
-The Program has not been downloaded
-Controller in INIT modality.

-Refer to the section 8.1
-Set the Controller in “Debug” modality
 and in “Run” condition or in “Release”
 modality.
-Remove eventual Break Points.
-Set the correct data-format of Registers.
-Verify the parameters of Function Block
 (data-format, masks, tables, etc..).
-Control, in the Program, the correspon-
 dence between Call and Return.
-Control the configuration of the Slave
 devices (type of input and output, etc..)
-Download the Program.
-Control if the INIT modality is active.

The configuration of the Controller is
unknown.

- -Set the Controllore in “INIT” modality; the
 parameters of configuration of the
 Controller will be forced to the default
 values listed in section 6.6 .

The Controller is connected in “INIT”
modality but is not executed (where
foresee the LED “STS” doesn't blink)
or there is not communication between
the Host PC and the Controller.

-Controller not correctly connected.
-Wrong port Baud Rate.

-Connect the terminal INIT to GND.
-Switch-off and than power-on the
 Controller after the connection of the
 terminal INIT to GND.
-Set the Baud-rate of the Slave Port as
 9600 bps.

The functions Clock and Calendar
(where foresee) don't work correctly.

-Battery low or absent.
-Clock and Calendar parameters not
 correctly set in the proper Registers.

-Change or insert the battery.
-Control the parameters of the System
 Registers (refer to the sections 3.3
 and 3.4).

The function “Search” doesn't find
any Controller.

-There are not Controllers connected.
-Controllers not correctly connected.
-The Controllers connected by Ethernet
 port has been set with communication
 parameters not compatible with the
 Ethernet interface of the Host PC in use.
-On the network are active Firewall or
 Routers that block the access to the
 Controller.

-Refer to the data-sheet of the Controller
 in use and verify the relative Technical
 Specifications.
-Verify the parameters of the Ethernet
 interface of the Host PC.
-Call the System Administrator in order to
 connect the controller to the network.

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

Dev9K

Pag. 34<< INDEX

9.Troubleshooting

The function “Search” doesn't find any
Slave device.

-There are not slave devices connected .
-The slave devices are not correctly
 connected.
-The Controller which the slave devices
 are connected to has not been selected.
-The Modbus addresses of the slave
 devices connected are not included in the
 range set in the System Register %S17
 (Gateway Mask) or in the range set in the
 menu “Search”.
- The baud-rate of the Slave devices
 connected is not the same of that set for
 the Master port of the Controller.
- The Timeout values are not correct.

-Refer to the data-sheets of the slave
 devices in use and verify the relative
 Technical Specifications.
-Verify that the Controller selected is the
 same which the slave devices are
 connected to.
- Verify the correspondence between
 settings and Modbus addresses of the
 slave devices.
-Verify the values of Gateway Mask.
-Control the baud-rate and delay time of
 the slave devices connected.

The data saved as Kostant in the
Register table, are not saved when the
Controller is switched off.

-The data have been saved in General
 Purpose Registers instead Retentive
 Registers .

-Save the kostant values in Retentive
 Registers.

The Web Pages haven't been loaded. -The IP address written in the address bar
 of the Internet browser is not the same of
 Controller's IP address.
-The Controllers connected by Ethernet
 port has been set with communication
 parameters not compatible with the
 Ethernet interface of the Host PC in use.
-On the network are active Firewall or
 Routers that block the access to the
 Controller.

-Verify the IP address written in the
 address bar.
-Verify the parameters of the Ethernet
 interface of the Host PC.
-Call the System Administrator in order to
 connect the controller to the network.

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

 Datexel s.r.l. reserves its rights to modify its products totally or in part without notice at any time.

Pag. 35

ED.01.13 - R03

<< INDEX

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35

