
 Via Monte Nero, 40/B – 21049 TRADATE (VA) ITALY
 Phone: +39 (0)331841070 Fax:+39 (0)331841950 - e-mail:datexel@datexel.it - www.datexel.it

Pag. 1

User Guide
Dev9K
v. 2.0

Integrated Development Environment to design and debug the applications based on the DAT9000 series controllers.
NOTE: this document is suitable for devices with these firmware versions:

9BB4, 9BB5, 9BA8, 9560, 9570

1. Introduction

1.1 - General Description
1.2 - Minimum System Requirements
1.3 - Procedure of Installation
1.4 - Terminology

2. Creation of the Application

2.1 - Open and Initialize the Program
2.2 - Connect and Search Device
2.3 - Creation of a Diagram
2.4 - Insert Data in a Function
2.5 - Log Panel and Compile

3. Internal Registers

3.1 - Internal Registers
3.2 - Data Format
3.3 - Mapping Registers

4. Functions description

4.1 - Function List
4.2 - Functions Description

5. Insertion of Tables

5.1 - Insertion of Linearization Tables
5.2 - IP addresses Table "Server / Slave" TCP devices

6. Controller operations

6.1 - Searching of the Devices Connected
6.2 - Manual Connection to the Device
6.3 - Program Download
6.4 - Debug Mode
6.5 - Release Mode
6.6 - INIT Mode
6.7 - WEB Interface
6.8 - Configuration Window
6.9 - Scheduler Window
6.10 - Insertion of Variables, Strings, Texts
6.11 - Graphics Object Manager and Display Window

7. Tips and Suggestions

7.1 - Ethernet connection

8. Error Messages and Troubleshooting

8.1 - Important Messages in Log Panel or in Pop-Up Window
8.2 - Possible causes of fault

9. Application Note

9.1 – Email Configuration

INDEX

mailto:datexel@datexel.it
http://www.datexel.it/

Dev9K

Pag. 2<< INDEX

1.1 - GENERAL DESCRIPTION

Dev9K is an Integrated Development Environment running under the Windows® Operative System that allows to design and
debug the applications based on the DAT9000 series control devices. With Dev9K it is possible to set the DAT9000 series
controllers to execute I/O read and write operations (DAT3000, DAT8000, DAT10000 series), mathematical and logic operations
and timers. Moreover it is possible to read and write in real time the Internal Registers of the Controller or connect it directly to the
slave devices connected to its Modbus Master Port.

Close eventual active or background applications.
Insert the CD-ROM of installation in the driver.
Wait for the Autorun window opening.
If the Autorun function is disabled, open the CD-ROM and execute the installation file at the path:
<CD Driver>:/doc/download.html
Click on the Tools button.
Click on the “download” button in the DAT9000 section.
Follow the Installation Wizard.

Operative System Windows® 7 / 8 / 8.1 / 10
Available Hard Disk memory 50 MB

1. Introduction

1.2 – MINIMUM SYSTEM REQUIREMENTS

1.3 - PROCEDURE OF INSTALLATION

Description of terms and abbreviations used in the IDE and inside this manual:

 Controller Device of the DAT9000 series.

Integrated Development
Environment Instructions set to create, to debug and to test the Program.
IDE

Program List of functions executed by the Controller.

Function Block Each block constituting the Main Program. Each Function Block can contain a function.
F.B.

Function Logical, mathematical or flow operation executed from the Controller.

Argument Each parameter contained in a function.

Register Position of a variable in the volatile memory of Controller.

Retentive Register Position of a variable in the non-volatile memory of Controller.

1.4 - TERMINOLOGY

Dev9K

Pag. 3<< INDEX

Once Dev9k installed, to run it double click on the program icon
(Pict.2.1) and give the administrator permissions.
The initialization window of the program will appear (Pict.2.2)
It is possible to:
- set the language (Pict.2.2-A);
- enter in offline mode choosing a device from the drop down list
and clicking on button “Offline” (Pict.2.2-B);
- enter in the search window to connect directly to a device
(Fig.2.2-C)

2.1 – OPEN AND INITIALIZE THE PROGRAM

Into the Search window there are two modes to connect to device:

- Search a device in the Net and connect to it (Pict.2.3-A)

- Connect directly to the device by its parameters (Ethernet or
RS485/uUSB), inserting them in the fields and clicking the button
“OK” (Pict.2.3-B)

For details consult the paragraph 6.1 and 6.2.

A B C

2. Creation of the Application

2.2 – CONNECT AND SEARCH DEVICE

Pict. 2.1

Pict. 2.2

Pict. 2.3

A

B

Dev9K

Pag. 4<< INDEX

2. Creation of the Application

2.3 – CREATION OF A DIAGRAM

- Insertion of function block

It is possible to insert a new function into the diagram dragging it from function block list (Pict.2.4-A) to working area of diagram
(Pict.2.4-B). Once the drag and drop has been completed it will be opened a window for the insertion of data in the function
(Pict.2.6) The functions in the list are grouped into functional groups.

- Move the function blocks in the working area

To move one or more function blocks select them (left click of the mouse) and then drag them in the desired position.

- Creation of the links between a block and another

To create a link between a block and another and control the flow of the diagram, the block from which the link starts from must
be deselected. So click the left mouse button on the block and drag the link to the destination block.

- Modify the data of a function block

To modify data in a function block, double-click of the left mouse button on the desired function block. As result, the data entry
window will open (Pict.2.6).

Pict. 2.5

Pict. 2.6

Pict. 2.4

A

B

Dev9K

Pag. 5<< INDEX

Pict. 2.7

2. Creation of the Application

- Delete the function blocks

To delete one or more function blocks select the desired blocks and use one of following methods:
- press the button CANC of the keyboard
- click the right button of the mouse and then select Delete
- in the menu bar, in the section Edit, select the button Delete (Pict.2.5)

- Copy the function blocks

To copy one or more function blocks select the desired blocks and use one of following methods:
- press the buttons CTRL+C of the keyboard
- click the right button of the mouse and then select Copy
- in the menu bar, in the section Edit, select the button Copy (Pict.2.5)

- Paste the function blocks

To paste one or more function blocks be sure to have copied them before and use one of following methods:
- press the buttons CTRL+V of the keyboard
- click the right button of the mouse and then select Paste
- in the menu bar, in the section Edit, select the button Paste (Pict.2.5)

When the user modifies a Function Block or inserts another one, the data
entry window will open (Pict.2.7), that allows to set the arguments relative to
the function selected.

Usually the first arguments (Pict.2.7-A) of the window identify and set data to
the function (number of register, type of register, values, etc).
The structure is the same for each function: on the left there are the labels
that suggest what is the relative argument, in the centre the values that the
arguments take and on the right the drop down list with types of data. Some
functions may have some additional buttons that allow to interact with the
insertion of data.
In general:
Source: is the input data of the function. This can be a register or a constant.
When the source is selected like constant(K_Flt), the insertion field become
green (Pict.2.8)
Dest: is usually the register where the result of the function is written
Block: is usually the number of repetition of the operation in consecutive
registers (Source and Dest)
Mask: is usually the desired mask to apply to the relative Source or Dest

In the entry window there is popup menu on side (Pict.2.7-B) that describes
the arguments of the function.

All the functions, in addition to the first arguments, have also:

Break (Pict.2.7-C): this argument allows to insert a break into the function.
With this, after the download of the program, when the device is in debug and
receives the command Run to Break it stops on the relative function with
break and points out it.

Comment (Pict.2.7-D): this argument allows to insert a comment into the
function block. By this the user can identify easily the block function in the
diagram.

After the insertion of all data required for the selected function click the button
OK (Pict.2.7-E). If a field is empty, it will appear the message “Found an
empty field, continue?”

Refer to the section “Function Description” for how to insert the functions.

2.4 INSERT DATA IN A FUNCTION

A

C

D

E

Pict. 2.8

B

Dev9K

Pag. 6<< INDEX

The Log Panel contains the information of connection and validation of the
program (Pict.2.9).
After the insertion of function blocks, it is possible to compile the program
clicking the button “Compile ” in the menu bar (Pict.2.10). The result of the
validation will be inserted in the log panel.
If there is an error in the validation it will be displayed in the panel with the
phrase “Process Validation: Error”. If the validation ends correctly, in
addition to the result (“Process Validation: Complete”), it will be displayed
the percentage of Eeprom used by the program.

2. Creation of the Application

2.5 – LOG PANEL AND COMPILE

NOTE:
It is possible to insert until 255 function blocks or until the available
Eeprom Memory Space has been filled.

Pict. 2.9

Pict. 2.10

Dev9K

Pag. 7<< INDEX

Pict. 3.1

A

B

C D E

Pict. 3.2

Each General Purpose or Retentive Register can be read or written using
one of the following data format :

 u_Int 16 bit Unsigned Integer (0 ÷ 65535)
 Int 16 bit Signed Integer (-32768 ÷ +32767)
 u_Long 32 bit Unsigned Long (0 ÷ 4,294,967,295)
 Long_ 32 bit Signed Long (-2,147,483,648 ÷ +2,147,483,647)
 Float 32 bit Floating Point
 Hex 16 bit Unsigned Integer visualized as Hexadecimal

characters (0000 ÷ FFFF)
 ASCII 16 bit Unsigned Integer visualized as ASCII characters
 Bin 16 bit Unsigned Integer visualized as binary code

NOTE: the 32 bit registers require the position of 2 registers and the
second is identified as “used”
For the registers in ASCII format, when more than 16 bit are occupied
(more than a register that is more than 2 characters), starting from the
second register the registers are identified as “String_Ram”.

3. Internal Registers

3.1 – INTERNAL REGISTERS

3.2 - DATA FORMAT

The Internal Memory of the Controller is accessible by the register table
(Pict.3.1) and it is composed of a 16 bit Register series divided as
follows:

System Registers: contain the information about the status
Controller. They are identified by orange rows.

General Purpose Registers: can be used in the Program to
move the data or to execute calculation functions. Their rows have not
colours.

Retentive Registers: can be used from the
Program to move the data or to execute calculation functions.
These Registers are saved in EEprom each time their values
change and they are uploaded when the Controller is powered-on. They
are identified by blue rows.

To update the Register's value, click the button “Refresh” (Pict.3.1-A).
For each Register it is visualized:
Address: The register address (Pict.3.1-B)
ShowVal: The value contained into the Register (Pict.3.1-C)
Name: The register name (Pict.3.1-D)
RegisterType: The register data format (Pict.3.1-E)

To modify the name or the value of a Register, double click on the row
of table regarding the Register.
Inside the “Set Register” window (Pict.3.2) it is possible to set the name
of the Register (only for the General Purpose Register or Retentive
Registers), to force the value contained in the Register (only if the
Controller is connected) and to set the type of data format of the
Register.

Dev9K

Pag. 8<< INDEX

3. Internal Registers

3.3 – MAPPING REGISTERS

Device

Register DAT9000IO-USB DAT9000-DL-IO DAT 9011-DL DAT 9011-USB DAT 9550 DAT 9550-AI

%R0 --Reserved--

%R1 Firmw are [0]

%R2 Firmw are [1]

%R3 Name [0]

%R4 Name [1]

%R5 Port 1 [Settings] --Reserved--

%R6 Node ID

%R7 Port 1 [Timeout RX] --Reserved--

%R8
--Reserved--

Digital Inputs Function Keys

%R9 Digital Outputs Actual Page

%R10 System Flags

%R11 --Reserved-- Pow erUp Safe Outputs Display Options

%R12 Watchdog Timeout

%R13 PC

%R14 Status [0]

%R15 Reset Timers

%R16 COM Errors

%R17 Gatew ay Mask [L-H] --Reserved--

%R18 Port 0 [Settings]

%R19 Port 2 [Settings] --Reserved--

%R20 Timers Enable

%R21 Time Base Flags

%R22-%R25 RTC

%R26

--Reserved--

Analog Input 0

--Reserved--

Analog Input

%R27 Analog Input 1

--Reserved--

%R28

--Reserved--
%R29

%R30

%R31

%R32 Analog Output 0

%R33 Analog Output 1

%R34 Input Type [1-0] Input Type

%R35

General Purpose||

%R927

%R928

--Reserved--

Freq input 0

General Purpose

%R929 Freq input 1

%R930 Freq input 2
--Reserved--

%R931 Freq input 3

%R932-933 Counter input 0

%R934-935 Counter input 1

%R936-937 Counter input 2
--Reserved--

%R938-939 Counter input 3

%R940-959 --Reserved--

%R960

General Purpose Memory Registers||

%R1023

%R1024

General Purpose||

%R1215

%R1216

Memory Registers||

%R1219

%R1220-1223 Memory Registers Log Dir Mem. Reg. Log Dir

%R1224

Memory Registers||

%R1280

DAT9000-DL
DAT9000-USB

IMPORTANTE: per la descrizione dettagliata dei registri, fare riferimento alla User Guide relativa a ciascun dispositivo.

Dev9K

Pag. 9<< INDEX

4. Functions description

Functions selection tree, divided per functional group

4.1 – FUNCTION LIST

Read/Write

Read Register

Read Input

Write Single

Write Multiple

Read Device

MOVE REGISTER

Move

BITWISE

And(bit)

Or(bit)

Xor(bit)

And(word)

Or(word)

Not

Bit Set

Bit Reset

SHIFT

Shift RIght

Shift Left

Rotate Right

Rotate Left

ALGEBRAIC

Addition

Subtraction

Multiplication

Division

Power x^y

Average

e^x

Square Root

Absolute Value

Minimum

Maximum

Xor(word)

COMPAREFLOW FUNCTION

IFBITGOTO

IFBITCALL

CALL

WHILECALL

Timer

Timer

Display

Call Page

Trip

A=B

A!=B

A>B

A<B

A>=B

A<=B

Internal Limit

External Limit

Block Move

Pos

Neg

4.2 – FUNCTIONS DESCRIPTION

Linearization

Scale

Write Device

Addition Calculates the sum of two values

Calculates the sum between an Internal Register and a constant or between two Internal Registers.

Arguments:
SourceA Constant or Internal Register relative to the first operator
SourceB Constant or Internal Register relative to the second operator
Dest Internal Register wherein the result is written
Block Number of repetition of the operation in consecutive registers (Source and Dest)

RETURN

Dev9K

Pag. 10<< INDEX

4. Functions description

Subtraction Calculates the difference of two values

Calculates the difference between an Internal Register and a constant or between two Internal Registers.

Arguments:
SourceA Constant or Internal Register relative to the first operator.
SourceB Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.
Block Number of repetition of the operation in consecutive registers (Source and Dest)

Multiplication Calculates the multiplication of two values

Calculates the multiplication between an Internal Register and a constant or between two Internal Registers

Arguments:
SourceA Constant or Internal Register relative to the first operator.
SourceB Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.
Block Number of repetition of the operation in consecutive registers (Source and Dest)

Division Calculates the division between two values.

Calculates the division between an Internal Register and a constant or between two Internal Registers.

Arguments:
SourceA Constant or Internal Register relative to the first operator.
SourceB Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.
Block Number of repetition of the operation in consecutive registers (Source and Dest)

Power x^y Performs exponentiation between two values.

Performs exponentiation between a register and a constant or between two registers.

Arguments:
SourceX Constant or Internal Register relative to the base of the exponentiation
SourceY Constant or Internal Register relative to the exponent of the exponentiation
Dest Internal Register wherein the result is written
Block Number of repetition of the operation in consecutive registers (Source and Dest)

Average Calculates the Arithmetic mean of N values.

Calculates the Arithmetic mean of N Internal Registers values starting from Source (sum of the values / N).

Arguments:
Source Address of the Internal Register containing the first value
N Number of Internal Registers of which calculate the mean.
Dest Internal Register wherein the result is written.

Dev9K

Pag. 11<< INDEX

4. Functions description

Square Root Calculates the square root of a value

 Calculates the square root of a value contained in an Internal Register.

Arguments:
Source Internal Register relative to the input
Dest Internal Register wherein the result is written.

e^x Performs exponential function of a value

 Performs the value of the exponential function with base e (Euler's number) and exponent contained in an
Internal Register

Arguments:
SourceX Internal Register relative to the exponent
Dest Internal Register wherein the result is written.

Absolute Value Calculates the absolute value of a value

 Calculates the absolute value of a value contained in an Internal Register.

Arguments:
Source Internal Register relative to the input
Dest Internal Register wherein the result is written.

Minimum Calculates the minimum value of N registers

 Calculates the minimum value of N Internal Registers values starting from Source

Arguments:
Source Address of the Internal Register containing the first value
N Number of Internal Register within find the minimum value
Dest Internal Register wherein the result is written.

Maximum Calculates the maximum value of N registers

 Calculates the maximum value of N Internal Registers values starting from Source

Arguments:
Source Address of the Internal Register containing the first value
N Number of Internal Register within find the maximum value
Dest Internal Register wherein the result is written.

Dev9K

Pag. 12<< INDEX

4. Functions description

Linearization Calculates a value in function of a linearization table

Calculates the Linearization of a value in function of the linearization table selected. Refer to the section 5.1
“Insertion of Linearization Tables” for more information.

Arguments:
Source Internal Register containing the value to linearize.
Function Name of the Linearization table to be followed. The button Table opens the window “Tables”
Dest Internal Register wherein the result is written.

Scale Executes the proportional scaling of a value of a register

Executes the proportional scaling of a value contained in an Internal Register referring to the input and output
ranges. The input range is defined by the limits Zero In and Span In. The output range is defined by the limits
Zero Out and Span Out

Arguments:
Source Internal Register relative to the input
Span In Maximum value of the input range
Zero In Minimum value of the input range
Dest Internal Register relative to the output
Span Out Maximum value of the output range
Zero Out Minimum value of the output range

Move Moves the value of an Internal Register or a Constant in an Internal Register

Writes in an Internal Register the value of a Constant (pre-set) or the value of another Register (copy). The
value will be converted to the format selected for the Register of destination.

Arguments:
Source Constant or Internal Register from which the value is read
Dest Internal Register wherein the value is written
Block Number of repetition of the operation in consecutive registers (Source and Dest)

Block Move Moves a block of registers

Moves a block of N registers starting from Source in another block. It is possible to swap the 8 bit for the uInt
registers and the 16 bit for uLong registers.

Arguments:
Source Address of the Internal Register containing the first value
Number Number of Internal Register to move
Dest First Register in which for the quantity indicated in Number are moved the registers starting from Source

IFBITGOTO Conditional jump executed in function of value of one bit

If the value of the bit set in the Source Register is 1, the next function executed by the program is the one
connected with the green arrow true. If the value of the bit is 0, the next function executed by the program is
the one connected with the red arrow false.

Arguments:
Source Internal Register relative to the input
Bit Bit that determines the jump (0÷15)

Dev9K

Pag. 13<< INDEX

4. Functions description

IFBITCALL Call to a subroutine in function of value of one bit

If the value of the bit set in the Source Register is 1, the program executes a call to the page (subroutine)
indicated in the field “DestTrue” and so to its first function after the START. If the value of the bit set in the
Source Register is 0, the program does not execute any call and continues.
The called page must have an univocal name. It is possible to select one of the available pages from drop
down list or to create another one writing a new name.

Arguments:
Source Internal Register relative to the input
Bit Bit that determines the call (0÷15)
DestTrue Pointer to the page (subroutine)

CALL Call to a subroutine

The program executes a call to the page (subroutine) indicated in the field “Dest” and so to its first function
after the START. It executes a jump to the first function block of a subroutine. At the end of the subroutine
(ended with the function Return), the program executes the function block after this. The called page must
have an univocal name. It is possible to select one of the available pages from drop down list or to create
another one writing a new name.

Arguments:
Dest Pointer to the page (subroutine)

WHILECALL Continuous call to a subroutine in function of value of one bit of a register

The program executes a continuous call to the page (subroutine) indicated in the field “Dest” until the value of
the register Source is lower than a constant or another register indicated in the field While<.
If the register is equal or bigger, the program does not execute any continuous call and continues.
The called page must have an univocal name. It is possible to select one of the available pages from drop
down list or to create another one writing a new name.

Arguments:
Source Internal Register relative to the input
While< Constant or Internal Register to compare to Source
Dest Pointer to the page (subroutine)

A=B Comparison of value (A=B) between two registers or between a register and a constant

Executes a comparison between InputA and InputB (registers or constants). If the values are equals sets the
bits of a destination register Dest in function of the setting of the parameter Mask.

Arguments:
InputA Constant or Internal Register relative to the first input to compare
InputB Constant or Internal Register relative to the second input to compare
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

RETURN Return from a Subroutine

Indicates the end of a Subroutine. The Program will execute the Block after the one that has called the
subroutine (function “CALL”, “WHILECALL”, “IFBITCALL”)

Dev9K

Pag. 14<< INDEX

4. Functions description

A>B Comparison of value (A>B) between two registers or between a register and a constant

Executes a comparison between InputA and InputB (registers or constants). If InputA is greater than InputB
sets the bits of a destination register Dest in function of the setting of the parameter Mask.

Arguments:
InputA Constant or Internal Register relative to the first input to compare
InputB Constant or Internal Register relative to the second input to compare
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

A<B Comparison of value (A<B) between two registers or between a register and a constant

Executes a comparison between InputA and InputB (registers or constants). If InputA is lower than InputB
sets the bits of a destination register Dest in function of the setting of the parameter Mask.

Arguments:
InputA Constant or Internal Register relative to the first input to compare
InputB Constant or Internal Register relative to the second input to compare
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

A<=B Comparison of value (A<=B) between two registers or between a register and a constant

Executes a comparison between InputA and InputB (registers or constants). If InputA is lower or equal than
InputB sets the bits of a destination register Dest in function of the setting of the parameter Mask.

Arguments:
InputA Constant or Internal Register relative to the first input to compare
InputB Constant or Internal Register relative to the second input to compare
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

A>=B Comparison of value (A>=B) between two registers or between a register and a constant

Executes a comparison between InputA and InputB (registers or constants). If InputA is greater or equal than
InputB sets the bits of a destination register Dest in function of the setting of the parameter Mask.

Arguments:
InputA Constant or Internal Register relative to the first input to compare
InputB Constant or Internal Register relative to the second input to compare
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

A!=B Comparison of value (A!=B) between two registers or between a register and a constant

Executes a comparison between InputA and InputB (registers or constants). If the values are different sets the
bits of a destination register Dest in function of the setting of the parameter Mask.

Arguments:
InputA Constant or Internal Register relative to the first input to compare
InputB Constant or Internal Register relative to the second input to compare
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

Dev9K

Pag. 15<< INDEX

4. Functions description

Internal Limit Comparison of value (Internal Limit) between a registers and two values: Maximum and Minimum

Executes a comparison between Input and two values: Maximum Value (MAX) and Minimum Value (MIN).
If the value of Input is between maximum and minimum, sets the bits of a destination register Dest in function
of the setting of the parameter Mask.

Arguments:
Input Constant or Internal Register relative to the input to compare
MAX Constant or Internal Register relative to High Limit level
MIN Constant or Internal Register relative to Low Limit level
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

External Limit Comparison of value (External Limit) between a registers and two values: Maximum and Minimum

Executes a comparison between Input and two values: Maximum Value (MAX) and Minimum Value (MIN).
If the value of Input is external to maximum and minimum, sets the bits of a destination register Dest in
function of the setting of the parameter Mask.

Arguments:
Input Constant or Internal Register relative to the input to compare
MAX Constant or Internal Register relative to High Limit level
MIN Constant or Internal Register relative to Low Limit level
Dest Internal Register wherein the bits will be set
Mask Mask used to set the register Dest (the button on side opens the window for the setting)

Dev9K

Pag. 16<< INDEX

4. Functions description

And (bit) Executes the logical operation “AND” between two single bits.

Executes the logical operation “AND” on a single bit between a Register and a Constant or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same. After the execution of the
logical operation only the bit set in the register of destination will be forced. In case of a 32 bit source Register
or Constant (long) and a 16 bit Register of destination (integer), the most significant bits will be ignored.

Arguments:
SourceA Constant or Internal Register relative to the first operator.
BitA Bit selected for the first operator
SourceB Constant or Internal Register relative to the second operator.
BitB Bit selected for the second operator
Dest Internal Register wherein the result is written.
BitDest Bit selected for the register Dest

Or (bit) Executes the logical operation “OR” between two single bits.

Executes the logical operation “OR” on a single bit between a Register and a constant or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same. After the execution of the
logical operation only the bit set in the register of destination will be forced. In case of a 32 bit source Register
or constant (long) and a 16 bit Register of destination (integer), the most significant bits will be ignored.

Arguments:
SourceA Constant or Internal Register relative to the first operator.
BitA Bit selected for the first operator
SourceB Constant or Internal Register relative to the second operator.
BitB Bit selected for the second operator
Dest Internal Register wherein the result is written.
BitDest Bit selected for the register Dest

XOr (bit) Executes the logical operation “XOR” (Exclusive Or) between two single bits.

Executes the logical operation “XOR” on a single bit between a Register and a constant or between two
Registers. The value will be converted to the format selected for the Register of destination. The address of
the source Register and the address of the Register of destination can be the same. After the execution of the
logical operation only the bit set in the register of destination will be forced. In case of a 32 bit source Register
or constant (long) and a 16 bit Register of destination (integer), the most significant bits will be ignored.

Arguments:
SourceA Constant or Internal Register relative to the first operator.
BitA Bit selected for the first operator
SourceB Constant or Internal Register relative to the second operator.
BitB Bit selected for the second operator
Dest Internal Register wherein the result is written.
BitDest Bit selected for the register Dest

And (word) Executes the logical operation “AND” between two values.

Executes the logical operation “AND” between a Register and a constant (mask) or between two Registers.
The value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same.
After the execution of the logical operation, only the bits set as 1 in the mask will be forced; the bits set as 0
won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to force one or more bits of
a Register as 0 (in the mask set as 0 the bits to force, set as 1 the other bits).

Arguments:
SourceA Constant or Internal Register relative to the first operator.
SourceB Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.
MaskDest Mask used to set the register Dest (the button on side opens the window for the setting)

Dev9K

Pag. 17<< INDEX

4. Functions description

Or (word) Executes the logical operation ”OR” between two values.

Executes the logical operation “OR” between a Register and a Constant (mask) or between two Registers.
The value will be converted to the format selected for the destination Register. The address of the source
Register and the address of the Register of destination can be the same.
After the execution of the logical operation only the bits set as 1 in the mask will be forced; the bits set as 0
won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to force one or more bits of
a Register as 1 (in the mask set as 1 the bits to force, set as 0 the other bits).

Arguments:
SourceA Constant or Internal Register relative to the first operator.
SourceB Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.
MaskDest Mask used to set the register Dest (the button on side opens the window for the setting)

Xor (word) Executes the logical operation “XOR” (Exclusive Or) between two values.

Executes the logical operation “XOR” between a Register and a constant (mask) or between two Registers.
The value will be converted to the format selected for the Register of destination. The address of the source
Register and the address of the Register of destination can be the same.
After the execution of the logical operation only the bits set as 1 in the mask will be forced ; the bits set as 0
won't be modified. In case of a 32 bit source Register or constant (long) and a 16 bit Register of destination
(integer), the most significant bits will be ignored. It is possible to use this function to invert (NOT) one or more
bits of a Register (in the mask set as 1 the bits to invert, set as 0 the other bits).

Arguments:
SourceA Constant or Internal Register relative to the first operator.
SourceB Constant or Internal Register relative to the second operator.
Dest Internal Register wherein the result is written.
MaskDest Mask used to set the register Dest (the button on side opens the window for the setting)

NOT Executes the inversion of one or more bits of a Register

Executes the inversion of one or more bit of a Register. After the execution of the logical operation will be
forced only the bits set as 1 in the mask; the bits set as 0 won't be modified.

Arguments:
Source Internal Register containing the value
Dest Internal Register wherein the result is written.
MaskDest Mask used to set the register Dest (the button on side opens the window for the setting)

Bit Set Set to logic state High the bits of a register

Set to logic state High one or more bits of a register Dest in function of the mask MaskDest. It will be set only
the bits set to 1 in the mask, the other will not be modified.

Arguments:
Dest Internal Register wherein the bits will be set
MaskDest Mask used to set the Register (the button on side opens the window for the setting)

Dev9K

Pag. 18<< INDEX

4. Functions description

Bit Reset Set to logic state Low the bits of a register

Set to logic state Low one or more bits of a register Dest in function of the mask MaskDest. It will be reset only
the bits set to 1 in the mask, the other will not be modified.

Arguments:
Dest Internal Register wherein the bits will be set
MaskDest Mask used to reset the Register (the button on side opens the window for the setting)

Pos Intercepts the Rising Edge of one or more bits of a register

If the bits of the register Source have been selected in MaskSource and change state (from 0 to 1), then the
corresponding bits of the register Dest will be forced to 1.
The register Latch is used as a temporary register and contains the previous value of the register Source.

Arguments:
Source Internal Register containing the value.
MaskSource Bit mask applied to the register (the button on side opens the window for the setting)
Latch Temporary register (contains the previous value of the register Source)
Dest Internal Register wherein the bits will be set

Neg Intercepts the Falling Edge of one or more bits of a register

If the bits of the register Source have been selected in MaskSource and change state (from 1 to 0), then the
corresponding bits of the register Dest will be forced to 1.
The register Latch is used as a temporary register and contains the previous value of the register Source.

Arguments:
Source Internal Register containing the value.
MaskSource Bit mask applied to the register (the button on side opens the window for the setting)
Latch Temporary register (contains the previous value of the register Source)
Dest Internal Register wherein the bits will be set

Shift Right Shift to right the bits of a Register

Executes the shift of a Register to right: all of the bits are shifted of N positions to right. The most significant
bits will be forced to 0.

Arguments:
Source Constant or Internal Register containing the value.
Number Number of shift to execute.
Dest Internal Register wherein the result is written.

Shift Left Shift to left the bits of a Register.

Executes the shift of a Register to left: all of the bits are shifted of N positions to left. The least significant bits
will be forced to 0.

Arguments:
Source Constant or Internal Register containing the value.
Number Number of shift to execute.
Dest Internal Register wherein the result is written.

Dev9K

Pag. 19<< INDEX

4. Functions description

Rotate Right Rotates to right the bits of a Register

Executes the rotation of a Register to right: all of the bits are shifted of N positions to right. At each shift the
most significant bit receives the value of the least significant bit.

Arguments:
Source Constant or Internal Register containing the value.
Number Number of shift to execute.
Dest Internal Register wherein the result is written.

Rotate Left Rotates to left the bits of a Register

Executes the rotation of a Register to left: all of the bits are shifted of N positions to left. At each shift the least
significant bit receives the value of the most significant bit.

Arguments:
Source Constant or Internal Register containing the value.
Number Number of shift to execute.
Dest Internal Register wherein the result is written.

Read Register Reads registers from a generic Modbus Slave device with function Modbus 03

Reads the value of N registers from a generic Modbus slave device and writes the read values in the selected
Internal Registers. To read it uses the function Modbus 03. In case of missing response or wrong
response by the slave device, the Registers of destination are not updated and the value of the System
Register “COM Errors” is increased.

Arguments:
Address Modbus address of the slave device (1÷247)
Register Address of the first Register to read (the mapping Registers starts from 0)
Number Numbers of Registers to read (1÷16)
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction

Read Input Reads registers from a generic Modbus Slave device with function Modbus 04

Reads the value of N registers from a generic Modbus slave device and writes the read values in the selected
Internal Registers. To read it uses the function Modbus 04. In case of missing response or wrong
response by the slave device, the Registers of destination are not updated and the value of the System
Register “COM Errors” is increased.

Arguments:
Address Modbus address of the slave device (1÷247)
Register Address of the first Register to read (the mapping Registers starts from 0)
Number Numbers of Registers to read (1÷16)
Dest Address of the first Internal Register wherein the read values are written to.
Delay Delay time between the reception of the response and the execution of the next instruction

Write Single Writes single register of a generic Modbus Slave device with function Modbus 06

Writes the value of an Internal Register in a register of a generic Modbus Slave device. To write it uses the
function Modbus 06. In case of missing response or wrong response by the slave device, the Registers of
destination are not updated and the value of the System Register “COM Errors” is increased.

Arguments:
Address Modbus address of the slave device (1÷247)
Register Address of the Register to write (the mapping Registers starts from 0)
Source Address of the Internal Register where the value to write is contained
Delay Delay time between the reception of the response and the execution of the next instruction

Dev9K

Pag. 20<< INDEX

4. Functions description

Write Multiple Writes multiple registers of a generic Modbus Slave device with function Modbus 16

Writes the values of N Internal Registers in the registers of a generic Modbus Slave device. To write it uses
the function Modbus 16. In case of missing response or wrong response by the slave device, the Registers of
destination are not updated and the value of the System Register “COM Errors” is increased.

Arguments:
Address Modbus address of the slave device (1÷247)
Register Address of the Register to write (the mapping Registers starts from 0)
Number Number of the registers to write (1÷16)
Source Address of the first Internal Register from which the values to write are contained
Delay Delay time between the reception of the response and the execution of the next instruction

Read Device Read registers from a Modbus Slave DAT3000/DAT10000 series device

Reads the I/O values from a Modbus slave DAT3000/DAT10000 series device and writes the values in the
Internal Registers. The function will generate the proper Modbus command and will process the response.
In case of missing response or wrong response by the slave device, the Registers of destination are not
updated and the value of the System Register “COM Errors” is increased.
Refer to the technical documentation of the device for the complete description of the I/O Registers.

Arguments:
Delay Delay time between the reception of the response and the execution of the next instruction
Device Type of device to read
Remote Address Modbus address of the slave device (1÷247)
Resource Type of resource to read (analog inputs, digital inputs, etc...)
From First resource to read
To Last resource to read
Dest Address of the first Internal Register wherein the read values are written to.

Write Device Write registers of a Modbus Slave DAT3000/DAT10000 series device

Writes the values of N Internal Registers in the I/O Register of a Modbus slave DAT3000/DAT10000 series
device. The function will generate the proper Modbus command and will process the response. In case of
missing response or wrong response by the slave device, the Registers of destination are not updated and the
value of the System Register “COM Errors” is increased.
Refer to the technical documentation of the device for the complete description of the I/O Registers.

Arguments:
Delay Delay time between the reception of the response and the execution of the next instruction
Device Type of device to write
Remote Address Modbus address of the slave device (1÷247)
Resource Type of resource to write (analog outputs, digital outputs, etc...)
From First resource to write
To Last resource to write
Source Address of the first Internal Register from which the values to write are contained

Timer Activation of an Internal Timer

Sets an Internal Timer (0÷15) and starts to count. During the count, the bit relative to the Timer selected in the
System Register “Timers Enable”, will be forced to 0. At the end of the count, the bit will be forced to 1.
It is possible to check the status of the bit to determine the end of the time set. The duration of the timer is set
by a constant mSec (until 65535) or if the constant is 0 by a register Reg.

Arguments:
Timer Number of the Internal Timer to enable (0÷15)
mSec Timer Pre-set (milliseconds)
Reg Register used to preset the Timer if mSec is 0

Call Page Call and refresh the page on the Display

Call the refresh of the page visualized on the display. Once the function is executed the program continues
with the next function.

Dev9K

Pag. 21<< INDEX

5.1 – INSERTION OF LINEARIZATION TABLES

5. Insertion of Tables

To insert or modify the Tables click the proper button in the
menu bar (Pict.5.1-A) or the button Table of the function
Linearization. Then it will be opened the window “Tables”
(Pict.5.2)

To upload the points of a table from a file, click on the “Load from
File” button (Pict.5.2-A); the parameters relative to the table like
the name, the number of points and the input and output values
for each point will be loaded.
It is possible to modify the Name of the table (Pict.5.2-B) (the
name must be unique, because it is used in the program to call
that table). Set the number of points to insert in the table
(Pict.5.2-C).
It is possible to insert until 32 points. Each point is defined by the
input and output values. The input values must be inserted in
increasing order, while the output values can be inserted both
in increasing and decreasing order. The example (Pict.5.2-D)
shows how to create a 8 points table to linearize a
RTD temperature sensor and to obtain the conversion Ohm/°C
(Pict.5.3).

When the insertion of points is complete, it is possible to save the
table in a file, clicking on the “Save to File” button (Pict.5.2-E); by
this command the name of the table, the number of points and
the input and output values per each points will be saved.

To insert the table inside the Program, click on the “>>” button
(Pict.5.2-F). The “Table List” (Pict.5.2-G) will be updated with the
name of the table just inserted and shows the tables available for
the Program.

In the Program, when the block function Linearization is inserted,
it is possible to select one of the tables available.
When the Function Block is recalled by the Program, the
Controller executes a control between the value contained into
the Internal Register and the points of the selected table and
calculates by interpolation the output value.
In the example for an input value of 1789 Ohm, will be calculated
an output of 35 °C (without linearization function the output
should be 47,3 °C).

Pict. 5.2

A

B

C

D

E F G

Pict. 5.1

A

°C Ohm

0 1000

15 1145,6

20 1367,3

25 1532,7

30 1673,4

40 1904,5

50 1966,3

60 2000

Pict. 5.3

800 1000 1200 1400 1600 1800 2000 2200

0

10

20

30

40

50

60

70

Ohm

°C Ohm / °C characteristicExample of table
provided from the
manufacturer of the
sensor :

Dev9K

Pag. 23<< INDEX

Pict. 6.2

6. Controller operations

6.2 – MANUAL CONNECTION TO THE DEVICE

6.1 – SEARCHING OF THE DEVICES CONNECTED

Connect the Controller to the Ethernet network and power-on it
(refer to the data-sheet).
Clicking the button “Search” in the menu bar, the window “Search”
(Pict.6.1) will be opened.
In the first list (Pict.6.1-A) there are the available networks of the
PC in use.
Click the button “Get Local IP” (Fig.6.1-B) to visualize the local IP
of the Personal Computer in the Net in use.
Once identified the correct Net, select it and click the button “Bind”
(Pict.6.1-C) to assign the search function.
Then click the button “Search” (Pict.6.2-A) to search devices in
the Net. If the Net is correct, and so there are one or more
devices, the devices found will appear in the list. If the Net is not
correct and the user wants to bind another Net, click the button
“Back”(Pict.6.2-B).
For each device found it is possible to read the relative IP address,
the MAC number, the Mask, the Modbus Address and the Init
status.
Click the right button of the mouse to open a drop down menu with
some additional functions (Pict.6.2-C).
Click Set as Controller to connect the device.
Click Open Webpage to open the web page of the device on the
browser.
Click Set IP address to set a new IP address for the selected
device.

Pict. 6.1

A

C

A B

B

C

In the window “Search” there is a section for manual connection
through Ethernet or COM RS485/uUSB ports. Here it is possible to
set communication parameters.

For the Ethernet (Pict.6.3):
IP Address: IP address of the device
Port: Modbus/TCP socket reserved port (502 for direct connection)
Timeout (mSec): Receiving Timeout for TCP commands
Modbus ID :Modbus node address (1 ÷ 247)

For COM port (Pict.6.4):
Port Name: Name of the available COM ports
Baud Rate: Rate of serial transmission
Data Bits: Number of bits of transmission
Parity: Parity of the transmission
Stop Bits: Stop bit of the transmission
Handshake: Handshake Mode
Modbus ID : Modbus node address (1 ÷ 247)

To confirm the parameters, click on the “OK” button.

Click the button “Connect” (Pict.6.5) to connect automatically to the
last device.
If the connection ends well, the message “Connected” will be
visualized in the Status bar and in the Log panel; in case of error,
refer to the section “Troubleshooting” to solve the problem.

From this moment all of the reading, writing, programming and
debugging operations will be sent only to the selected Controller.
If the user has to change the Controller, it is necessary to
disconnect the Controller in use and connect to another Controller
following one of the modalities described above.

Pict. 6.3

Pict. 6.4

Pict. 6.5
NOTE: the controller goes automatically offline after the
socket timeout set into it has expired. In this case connect
again to the device

Dev9K

Pag. 24<< INDEX

6. Controller operations

Pict. 6.6

A
When the Program is complete and if the compiling ends correctly
it is possible to download it in the internal memory of Controller.
Clicking the button “Download” in the menu bar (Pict.6.6-A), the
“Download” window will be opened (Pict.6.7). The Download
operations are allowed only in “Debug” mode (refer to the section
“Debug Mode”).
It is possible to set two options:
 “Application” (Pict.6.7-A) – Download the program in the internal
memory of the Controller.
 “Variables, String, Text” (Pict.6.7-B) – Download the settings of
the variables, strings and texts.

Click the button “Download” (Pict.6.7-C) to download the selected
options in the Controller.

Pict. 6.7

A
B

C

6.3 – PROGRAM DOWNLOAD

During the development of the Program, if the Controller is
connected, click the button “Debug” (Pict.6.8-A) to activate the
“Debug” mode.
In the Status bar the message “Debug” (Pict.6.9) will be visualized
and in the menu bar the buttons to execute the following debug
operations will be enabled:
 “Run” (Pict.6.8-B) – Executes the Program continuously.
 “Run To Break” (Pict.6.8-C) – Executes the Program up to the
Break point
 “Halt/Step” (Pict.6.8-D) – Interrupts the execution of the Program
(“Run” condition) / executes the Program step by step (“Stop”
condition)
 “Animate” (Pict.6.8-E) – Simulates the evolution of the Program
flow executing it step by step.
 “Stop” (Pict.6.8-F) – Blocks the Program and reset it to the first
Function Block.

Then it is possible to follow the flow of the program, reading the
state of the Controller and input registers from the register table.
When the Program is in Halt, Step or Animate the position of the
function block to be executed is identified with the red border. In
the same time in the register table the value of the Program
Counter (“PC”) is updated (Pict.6.10).

Pict. 6.8

A B C D E F

Pict. 6.9

6.4 - DEBUG MODE

Pict. 6.10
After the phases of development and Debug it is possible to
proceed with the “Release” mode, clicking the button “Release”
(Pict.6.11-A).
In the Status bar the message “Release” (Pict.6.12) will be
visualized and in the menu bar the buttons to execute the debug
and download operations will be disabled.
In the “Release” Modality, at the power-on, the Controller will be
automatically set in “Run” condition, loading in the RAM memory
the Program saved in the Internal Flash memory.
In this modality it is possible to read and write the Internal
Registers.

6.5 - RELEASE MODE

G

Pict. 6.12

A
Pict. 6.11

Dev9K

Pag. 25<< INDEX

6. Controller operations

6.6 - INIT MODE

All DAT9000 series devices are equipped with the INIT mode. This is a mode to
access the device with the default parameters regardless of the configuration
stored in EEPROM.
Following is the procedure for using the INIT mode which is also indicated on the
User Guide of each device in the "PROCEDURES" section:

Over Ethernet:
- IP Address: XXX.XXX.XXX.XXX provided by the DHCP if is enabled or
 192.168.1.174 if DHCP is disabled (verify that the IP is not already used and that
 the PC belongs to the same subnet)
- Modbus address: 10
 By these parameters it is possible to access the device in INIT mode to configure
 it or see the stored configuration.
To enter INIT, follow the procedure below:
1) Turn off the device;
2) Connect the INIT terminal to the -V terminal as shown in the technical datasheet
 of the device.
3) Turn on the device;
4) Connect to the device using the default parameters shown above.

When the user finishes working in INIT mode:
1) Turn off the device;
2) Remove the INIT connection;
3) Turn on the device and connect with the parameters known or configured in INIT
 mode.

Over RS485 slave or uUSB:
1) Switch off the device.
2) Connect only the device to be programmed to the RS485 slave or uUSB
 network.
3) Connect the INIT terminal to terminal V-.
4) Turn on the device.
5) Set the communication port with the following values

Mode = Modbus RTU
Baud-rate = 9600 bps
Parity = None
Bit number = 8
Stop bit = 1
Modbus address = 10

6) Read or program the desired settings in the registers using the Dev9k software.
7) Switch off the device.
8) Disconnect the INIT terminal from terminal V-.
9) Set the communication port with the programmed baud-rate
10) The module answers with the programmed address

ATTENTION:

In INIT mode, the device's Debug / Stop mode is also forced.
Therefore any program stored in EEPROM will not be
executed.

http://www.dyndns.com/

Dev9K

Pag. 27<< INDEX

6.8 - CONFIGURATION WINDOW

Click in the menu bar the button “Config” to show the device configuration window
(Pict.6.16-A)

In the configuration window (Pict.6.17) it is possible to visualize most of the editable parameters of a device.

The fields on the top of the window are:
- the Modbus address of the device to connect to (Pict.6.17-A)
- the model of the device connected (Pict.6.17-B)
- the button “Update” used to update the window and so the parameters available for the selected device (Pict.6.17-C)
- the button “Start” used to update cyclically the window and beside it there is the frequency of update (Pict.6.17-D)
- the button “Stop” to stop the cycling update (Pict.6.17-E)

The window is divided in tabs and internal sections visible or not in function of the firmware of the selected device. To modify a
parameter usually there is a button with pencil near it.

6. Controller operations

Pict. 6.16

A

A B

Pict. 6.17

C D E
System

The System Tab contains the system data of the
device:
- the Modbus address of the device (Pict.6.17-F)
- the ID and the name of the device (Pict.6.17-G)
- the WatchDog state and PowerUp state (Pict.6.17-H)
- the enable option of WatchDog with relative timeout
time (Pict.6.17-I)
- the date and time measured by the device's RTC with
sync button (Pict.6.17-L)
- in the display there is a section to set brightness,
contrast and negative/positive option of display.

F G

H
I

L

Ethernet

The Ethernet Tab contains the Ethernet configuration
data of the device:
- IP address of the device (Pict.6.18-A)
- Subnet Mask of the device (Pict.6.18-B)
- Gateway of the device (Pict.6.18-C)
- DNS 1 and DNS 2 of the device (Pict.6.18-D)
- NetBios Name of the device (Pict.6.18-E)
- Socket Timeout of the device expressed as minutes
(Pict.6.18-F)
- Enable of DHCP for the device (Pict.6.18-G)

Pict. 6.18

A

B
C

D

E

G
F

Dev9K

Pag. 28<< INDEX

Comm

The Comm Tab contains the configuration data of the
Com Ports available on the device.
- Port 0 (RS485 Slave) with Baud Rate, Par, Stop Bit
and Delay (Pict.6.19-A)
- Port 1 (RS485 Master) with Baud Rate, Par, Stop Bit
and Timeout (Pict.6.19-B)

Pict. 6.19

A B

Analog In

The Analog In Tab contains the configuration data of
the analog input of the device. So in function of the
selected device there is a different number of analog
inputs with different settings.
In general there are:
- the number of the channel (Pict.6.20-A)
- the type of input for the channel and the relative
button with pencil to set the input selected (Pict.6.20-B)
- the enable of the channel (Pict.6.20-C)
- the measured value of the input channel (Pict.6.20-D)
- the break status of the channel (Pict.6.20-E)
- the sync value of the channel with the button to save
the values (Pict.6.20-F)

Pict. 6.20

Analog Out

The Analog Out Tab contains the configuration data of
the analog output of the device. So in function of the
selected device there is a different number of analog
outputs with different settings.
In general there are:
- the number of the channel (Pict.6.21-A)
- the type of output for the channel and the relative
button with pencil to set the output selected (Pict.6.21-
B)
- the value of the output channel (Pict.6.21-C)
- the Safe value of the channel when the device is in
WatchDog (Pict.6.21-D)
- the PowerUp value of the channel when the device is
restarted (Pict.6.21-E)
- the button to save Safe Value and PowerUp Value
(Pict.6.21-F)Pict. 6.21

A B C D E F

A B C D E
F

6. Controller operations

Dev9K

Pag. 29<< INDEX

Digital In

The Digital In Tab contains the states of digital inputs.
In function of the selected device there are different
numbers of inputs (Pict.6.22-A). If the digital input has
logic state high the relative indicator is highlighted in
green. There is a button to clear at the same time the
states of all rising Latch and falling Latch of digital
inputs.(Pict.6.22-B).

Pict. 6.22

A

B

Digital Out

The Digital Out Tab contains the states of digital
outputs and the PowerUp and Safe values of the
relative outputs. In base of the selected device there
are different numbers of outputs (Pict.6.23-A).
It is possible to visualize and set the different states of
the outputs clicking the proper buttons. When the
output has logic state high the button is red.

Pict. 6.23

A

6. Controller operations

Pict. 6.24

IP Table

The IP table contains the IP addresses of the Slave /
Server devices that can be queried on the Ethernet
interface with the Modbus TCP / IP protocol (Pict.
6.24). A maximum of 8 IP addresses and therefore 8
server devices can be entered.

For more detailed information on the use and insertion
of data in the IP table, refer to paragraph 5.2 of this
manual.

Dev9K

Pag. 30<< INDEX

6.9 – SCHEDULER WINDOW

Click the button “Scheduler” in the menu bar to open the
Scheduler window.(Pict.6.24-A)
The Scheduler window (Pict.6.25) allows to insert and modify the
settings of data recordings, the emails and the synchronized
scheduler.

To insert a new element drag it from left list (Pict.6.25-A) to right
list (Pict.6.25-B).
Click the button “Create New” (Pict.6.17-C) to open a wizard
window that guides the user to create element without
manual insertion.
The available elements are:
- CSV Standard : allows to execute a variables recording. The data
are stored on USB pen in .CSV format; all files saved in the USB
are accessible from the page “Download” of the Web pages.
- CSV Header : allows to execute a texts recording. The data are
stored on USB pen in .CSV format; all files saved in the USB are
accessible from the page “Download” of the Web pages.
- EMail : allows the device to send email. Server, Receivers, Body
of email are settable from Web pages.
- Scheduler : allows to set a mask of bits of a register in order to
control the logging events or the emails.

For each element it is possible to set:
- Profile Name (Pict.6.26-A): name used to identify the element.
- Date and time of start and end (Pict.6.26-B): indicates the period
of validity of the element that works only between these two dates.
- Event that triggers the action (Pict.6.26-C):
by time, the action is activated at regular intervals of time based on
the time set;
by trigger, the action is activated at each variation of the bit's state
of a register (rising edge or falling edge).

For CSV Standard, in addition to the common parameters, it is
possible to set:
- Destination directory / Frequency to create file (Pict.6.26-D): the
destination directory indicates the directory where all the files of
the current task are created. If the directory written does not exist,
it will be created automatically. The parameter about the time set
(hour, day, month, year) indicates the frequency for which a new
file containing the data recordings is created and opened for
writing. Each time that the period of time set expires the file
previously created is closed. The file name is assigned in function
of period of time chosen.
- List of variables to save (Pict.6.26-E): draging the variables from
the list on the left to the list on the right the fields composing the
records will be created(columns of CSV).
To modify the variables click the button “Variables” (refer to
section “Insertion of Variables, Strings, Texts”).

For CSV Header, in addition to the common parameters, it is
possible to set:
- Destination directory / Frequency to create file (Pict.6.27-A): the
destination directory indicates the directory where all the files of
the current task are created. If the directory written does not exist,
it will be created automatically. The parameter about the time set
(hour, day, month, year) indicates the frequency for which a new
file containing the data recordings is created and opened for
writing. Each time that the period of time set expires the file
previously created is closed. The file name is assigned in function
of period of time chosen.
- Record format (Pict.6.27-B): Header Format is the text used for
the header of the CSV file, Record Format is the text used for each
record of the CSV file.
To modify the texts click the button “Text” (refer to section
“Insertion of Variables, Strings, Texts”).

Pict. 6.25

A

A

C

D

E

B

Pict. 6.24

B

A

C

Pict. 6.26

B

Pict. 6.27

A

6. Controller operations

Dev9K

Pag. 31<< INDEX

For the Emails it is possible to set only the common parameters:
Profile Name, Date and time of start and end, event that triggers
the Email.
The parameters of the Email message are settable only from Web
pages.

For the synchronized scheduler (Scheduler), in addition to the
common parameters, it is possible to set the register in which to
set the bits in function of a Mask. (Pict.6.28-A)

After insertion or modifying the parameters of an element, click the
button “Save” to save it (Pict.6.28-B).

Pict. 6.28

A
B

D

A

F

E

A

B

C

IMPORTANT:
The device does NOT manage the DST.

B

The Variables window (Pict.6.29) allows to modify Variables,
Strings and Texts to use in the CSV Data Recordings.

For each variable it is possible to set:
Label (Pict.6.29-A): name of the variable (used only in the
program as identifier)
Type (Pict.6.29-B): type of variable. It can be UInt, Int, Ulong,
Long, Float, String(Ram), String(Eprom), Date (variable to record
the date), Time (variable to record the time)
Location Register (Pict.6.29-C): ram register of the device which
the variable refers to. For the types Date and Time this field does
not exist because the device automatically gets it.
Output Format (Pict.6.29-D): format of the variable saved in
the .CSV file. It can be set as Decimal, Exponential, or
Hexadecimal, with sign, and the number of digits and decimals.
For the types Date and Time this field does not exist.
Set Alternative (Pict.6.30): available only for types String(Ram)
and String(Eprom). If selected, it allows to set a register that
contains an alternative string(Pict.6.30-A) used when the bits of
mask of a trigger register are 1 (Pict.6.30-B)
CSV Header Name (Pict.6.29-E): name of the header of the
variable in the CSV file.

To confirm and save the parameters of a modified variable click
the button with pencil (Pict.6.29-F) or the button “OK” that closes
the window(Pict.6.29-G).

For strings and texts in their tabs (Pict.6.29-H) it is possible to
modify the content inserting a maximum of 32 characters for the
strings and a maximum of 512 characters for the texts. To confirm
click the relative button with pencil.

6.10 – INSERTION OF VARIABLES, STRINGS, TEXTS

Pict. 6.29

Pict. 6.30

G

H

6. Controller operations

Dev9K

Pag. 32<< INDEX

6.11 – GRAPHICS OBJECT MANAGER AND DISPLAY WINDOW

6.11A: WINDOW STRUCTURE

This menu of configuration must be used only to program the graphic display.
To open the “Display” window select in the Menu Bar “Tools → Display” (Pict.6.31-A)
The window is composed of:
- a graphic preview of the display (Pict.6.32-A) that allows the user to visualize the position and the
structure of the objects inserted;
- a group of operational buttons to work on the structure of the
graphic pages (Pict.6.32-B)
- a group of operational buttons to work on the graphic objects (Pict.6.32-C)
- a window to show the properties of the single graphic object (Pict.6.32-D)
- a button to save the properties of the selected object (Pict.6.32-E)

A

C

D

B

E

6.11B: GRAPHIC OBJECTS

By the “Display” window it is possible to create and set the visualization of the following objects:

-page: area of visualization of the objects.
-label: strings of 11 alphanumerical characters length; it is possible to visualize the characters that belong to the standard ASCII
table (not extended). Note: for the character “°”, use the character “^” (example: °C → ^C)
-numeric value of a register: visualization, in a format defined by the user, of the value of an Internal register.
-progress bar: progress bar with value of filling proportional to the value of an internal register;
-rectangle: creation and visualization of simple geometric shapes (rectangle);
-picture: creation and visualization of pictures where the filling condition depends of the logic state of the bit of a single register.

Pict. 6.31

Pict. 6.32

A

6. Controller operations

Dev9K

Pag. 33<< INDEX

6.11C: CREATION OF THE DISPLAY WINDOW

Work on the graphic pages (Reference Pict.6.33)
To insert a graphic page click the button “Insert page” (Pict.6.33A); to the
page created will be assigned a progressive identification number and the
page will appear in the list of the existing pages. In the list the page
selected will be highlighted in blue (Pict.6.33E).In case of creation of several
pages it is possible to use the scrolling buttons “Page Up” (Pict.6.33C) and
“PageDown” (Pict.6.33D) to move into the list and select the desired page;
the page preview will be updated in function of the page selected. To delete a
page click the button “Delete page” (Fig.6.33B).

Work on the graphic object (Reference Pict.6.34)
- Label.
To insert the object “Label”, click the button “Label” (Pict.6.34A). Inside the
“List Object” (Pict.6.34F) the text “New Labe 0” will appear.
- Numeric value of a register.
To insert the object “Numeric value”, click the button “Number” (Pict.6.34B).
Inside the “List Object ” (Pict.6.34F) the text “%R26” will appear.
- Progress bar.
To insert the object “Progress bar”, click the button “Progress bar”
(Pict.6.34C). Inside the “List Object ” (Pict.6.34F) the text “Pbar” will appear.
- Picture.
To insert the object “Picture”, click the button “Picture” (Pict.6.34D). Inside
the “List Object ” (Pict.6.34F) the text “Pic” will appear.
- Rectangle.
To insert the object “Rectangle”, click on the button “Rectangle” (Pict.6.34E).
 Inside the “List Object ” (Pict.6.34F) the text “Rect” will appear.

The object inserted will be highlighted in blue inside the “List Object ”.
Use the scrolling buttons “Scroll Up” and “Scroll Down” (Pict.6.34G) to move
inside the “List Object ” and to select the desired object.
To delete an object, select the object inside the “List Object” and click the
button “Delete Object” (Pict.6.34H).

Properties of the graphic objects Window (Reference Pict.6.35)
Inside the Display window, each object is defined by specific properties.
The confirm button with the pencil (Pict.6.35I) saves the modifies applied to
the selected graphic object and updates the preview of the display. In case of
modify of an object and missed click of the confirm button, the modify won't
be saved.

 Label.
Format (Pict.6.35A):Allows to set the size of visualization of the character in
two sizes:: Small(6x8p.) and Medium(12x16p.).
Register (Pict.6.35B): Allows to set the Internal Register that contains the bit
to which the visualization of the dynamic text is connected to.
Bit [0÷15] (Pict.6.35C): Allows to set the bit of the Internal register to which
the visualization of the dynamic text is connected to.
Position (Pict.6.35D): Defines the coordinates, expressed as pixel, of the
dynamic text's position inside the graphic pages (X→horizontal: 0 up to 131;
Y→vertical: 0 up to 31).
Direction (Pict.6.35E): Defines the orientation (horizontal or vertical) of the
dynamic text inside the graphic page.
Reverse (Pict.6.35F): Defines the visualization of the object as direct or
reverse referred to the background of the graphic page.
Label (Pict.6.35G): Allows to insert the string of alphanumerical characters
(11 max.) that will be visualized if the logic state of the reference bit is 0.
Alternative (Pict.6.35H): Allows to insert the string of alphanumerical
characters (11 max.) that will be visualized if the logic state of the reference
bit is 1. If the flag alternative is not enabled, this parameter has not effect and
is equal to Label.
Button “Confirm” (Pict.6.35I).

Pict. 6.33

A B

C D

E

Pict. 6.34

Pict. 6.35

A

B C

D F

A

B

C

D

G

H

F

G

E

E

H

I

6. Controller operations

Dev9K

Pag. 34<< INDEX

 Numeric value of a register.
Format (Pict.6.36A): Allows to set the size of visualization of the object in
three sizes: Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Register (Pict.6.36B): Allows to set the Internal Register of which the value
is visualized .
Type (Pict.6.36C): Allows to set the format of the Internal Register's value to
visualize.
Position (Pict.6.36D): Defines the coordinates, expressed as pixel, of the
object's position inside the graphic page (X→horizontal: 0 up to 131;
Y→vertical: 0 up to 31).
Direction (Pict.6.36E): Defines the orientation (horizontal or vertical) of the
object inside the graphic page.
Reverse (Pict.6.36F): Defines the visualization of the object as direct or
reverse referred to the background of the graphic page.
Digits, Decimals, Signed (Pict.6.36G): Defines the format of visualization of
the value: digits is the number of integers before the commas, decimals is
the number of decimals after the commas, signed is checked if the sign is
used.
Button “Confirm” (Pict.6.36H).

 Progress bar.
Register (Pict.6.37A): Allows to set the Internal Register to which the filling
ratio of the bar is connected.
Type (Pict.6.37B): Allows to set the format of the Internal Register's value
Position (Pict.6.37C): Defines the coordinates, expressed as pixel, of the
object's position inside the graphic page (X→horizontal: 0 up to 131;
Y→vertical: 0 up to 31).
Direction (Pict.6.37D): Defines the orientation (horizontal or vertical) of the
object inside the graphic page.
Reverse (Pict.6.37E): Defines the visualization of the object as direct or
reverse referred to the background of the graphic page.
Dimensions (Pict.6.37F): Defines the dimensions (length x width),
expressed as pixel, of the object.
Filling constants (Pict.6.37G): Defines the values of the Internal Register
selected to which the events of Start (MIN) and Stop (MAX) of filling of the
bar are connected.
Button “Confirm” (Pict.6.37H).

 Picture.
Format (Pict.6.38A): Allows to set the size of visualization of the object in
three sizes: Small(6x8p.), Medium(12x16p.) and Large (24x32p.).
Register (Pict.6.38B): Allows to set the Internal Register to which the
visualization of the picture is connected.
Bit (Pict.6.38C): Allows to set the bit of the Internal register to which the
visualization of the picture is connected to.
Position (Pict.6.38D): Defines the coordinates, expressed as pixel, of the
object's position inside the graphic pages (X→horizontal: 0 up to 131;
Y→vertical: 0 up to 31).
Direction (Pict.6.38E): Defines the orientation (horizontal or vertical) of the
object inside the graphic page.
Reverse (Pict.6.38F): Defines the visualization of the object as direct or
reverse referred to the background of the graphic page.
Picture [Off] (Pict.6.38G): Indicates how the picture will be visualized if the
logic state of the reference bit is 0.
Picture [On] (Pict.6.38H): Indicates how the picture will be visualized if the
logic state of the reference bit is 1.
Button “Confirm” (Pict.6.38I).

 Rectangle.
Position (Pict.6.39A): Defines the coordinates, expressed as pixel, of the
object's position inside the graphic pages (X→horizontal: 0 up to 131;
Y→vertical: 0 up to 31).
Direction (Pict.6.39B): Defines the orientation (horizontal or vertical) of the
object inside the graphic page.
Reverse (Pict.6.39C): Defines the visualization of the object as direct or
reverse referred to the background of the graphic page.
Dimensions (Pict.6.39D): Defines the dimensions (length, width and line
tickness), expressed as pixel, of the object.
Button “Confirm” (Pict.6.39E).

Pict. 6.36

A

B C

D E F

G

H

Pict. 6.37

A B

C D E

F

G

H

Pict. 6.38

A
B C

D E F

G

H

I

Pict. 6.39

E

A B C
D

6. Controller operations

Dev9K

Pag. 35<< INDEX

7.1 – ETHERNET CONNECTION

On the Ethernet side, the Controller works like a Server, therefore
for the connection to the LAN network it is necessary to follow the
standards for the Ethernet connections. Hereafter some practical
tips to connect the Controller are reported.

To connect the Controller directly to a PC, use a crossover cable.
To connect the Controller to an Hub, Switch or Router, use a
direct cable.

Due to their settings, it could happen that some Firewalls won't
allow the communication with the Controller; this kind of problem
could happen particularly in phase of Search: in case of
communication problems it is suggested, if possible, to disable
eventual active Firewalls on the Client PC or Router.

If the DHCP service (Dynamic Host Communication Protocol) is
not in use, be sure that the IP, the Subnet Mask and the Gateway
address of the Controller will be compatible with the settings of
the LAN network which the Controller is connected to.

7. Tips and Suggestions

Dev9K

Pag. 36<< INDEX

8.1 – IMPORTANT MESSAGES IN THE LOG PANEL OR IN POP-UP WINDOW

8. Error messages and Troubleshooting

MESSAGE POSSIBLE CAUSES POSSIBLE SOLUTIONS

“Connected”

“... - Connected”

- The device is just connected using the
correct parameters

 “Disconnected”

“... - Disconnected”

-The device previously connected has just
been disconnected or it is not possible to
communicate with it

If it is not possible to communicate with
the device verify the physical connections
and the parameters and reconnect to it
(Par 6.1, Par 6.2)

 “Timeout Connection” - It is not possible to communicate with
the device over Ethernet, because it is in
Socket Timeout or it has been physical
disconnected.

-The device is in Socket Timeout for no
actions: reconnect it (Par 6.1, Par 6.2)
-The device is physically disconnected
from the Net: verify the connections and
 reconnect.

 “Read/Write COM Error” - An error occurs during the
communication over Serial Port

 - The device is physically disconnected:
verify the connections and reconnect.

 “Socket Timeout” - An error occurs during the
communication over Ethernet.
The device is not in the Net or the
inserted IP doesn't exist.

 - The device is not in the Net or the
inserted IP doesn't exist: verify the
connection parameters, the connections
and try to connect.

 “Timeout Error” - An error occurs during the
communication over Ethernet.
The device has a Modbus Address
different from the one selected

 -The device has a Modbus Address
different from the one selected: verify the
connection parameters, the connections
and try to connect.

 “Com Error” - An error occurs during the
communication over Serial Port.
The device is not connected to the PC via
Com port or wrong parameters have been
inserted.

 - The device is not connected to the PC
via Com port: verify connections and
reconnect.
 - Wrong parameters are inserted: verify
Serial connection parameters (Com port,
Baud Rate, Modbus address, etc...), and
try to connect.

 “Process Validation: Complete” - The diagram realized doesn't contain
structural errors and so it is possible to
download it in the Eprom of the device

 “Process Validation: Error” - The diagram realized contains structural
errors. It is not possible to download it in
the Eprom of the device

- Check the diagram looking for the errors

 “Download Complete” - Download Eprom successful.

“No Device Connected”. - No connection to a device has been
executed or the device have been
previously disconnected from the program

- If no connection to a device has been
executed and the program is in Offline
mode, connect to a device.
- If the device have been previously
disconnected or a communication error
occurs, verify communication parameters,
the connections and try to connect.

Dev9K

Pag. 37<< INDEX

8. Error messages and Troubleshooting

8.2 – POSSIBLE CAUSES OF FAULT

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

It is not possible to power-on the
Controller.

-The Controller is not correctly powered.
-The value of the power supply value is
 lower than the specifications limits.

-Refer to the data-sheet of the Controller
 in use and verify the relative Technical
 Specifications.

There is not communication between
the Host PC and the Controller.

-Ethernet port not correctly connected.
-Modbus Slave port not correctly
Connected or set.
-Eventual interface between PC and
Controller not correctly connected.
-Wrong communication parameters.

-Refer to the section 7.1
-Refer to the data-sheets of the Controller
 and the Interface device in use.
-Refer to the section 8.1

There is not communication between
the Controller and one or more
Modbus slave devices.

-Modbus Master port not correctly
 connected.
-The slave device is not correctly powered
-The slave device is not correctly
 connected on the RS-485 serial line.
-Wrong communication parameters.
-The Modbus addresses of the slave
 devices connected are not included in the
 range set in the System Register %R17
 (Gateway Mask) .

-Refer to the section 8.1
-Refer to the data-sheets of the Controller
 and the Slave devices in use.
-Slave device in INIT condition and
 Baud-rate of communication different of
 9600 bps.
-Verify the values of Gateway Mask.

The Program is not correctly executed
or it is impossible to execute the
Program.

-Wrong communication parameters.
-The Controller is in “Debug” modality and
in Halt, Stop or Break Point condition.
-Wrong data-format of the Registers.
-Wrong parameters of the Function Block.
-Parameters of the eventual Slave
devices connected not correctly inserted.
-The Program has not been downloaded
-Controller in INIT modality.

-Refer to the section 8.1
-Set the Controller in “Debug” modality
 and in “Run” condition or in “Release”
 modality.
-Remove eventual Break Points.
-Set the correct data-format of Registers.
-Verify the parameters of Function Block
 (data-format, masks, tables, etc..).
-Control the configuration of the Slave
 devices (type of input and output, etc..)
-Download the Program.
-Control if the INIT modality is active.

The configuration of the Controller is
unknown.

- -Set the Controller in “INIT” modality; the
 parameters of configuration of the
 Controller will be forced to the default
 values listed in section 6.6 .

The Controller is connected in “INIT”
modality but is not executed (where
foresee the LED “STS” doesn't blink)
or there is not communication between
the Host PC and the Controller.

-Controller not correctly connected.
-Wrong port Baud Rate.

-Connect the terminal INIT to GND.
-Switch-off and than power-on the
 Controller after the connection of the
 terminal INIT to GND.
-Set the Baud-rate of the Slave Port as
 9600 bps and Address 10.

The function “Search” doesn't find
any Controller.

-There are not Controllers connected.
-Controllers not correctly connected.
-The Controllers connected by Ethernet
 port has been set with communication
 parameters not compatible with the
 Ethernet interface of the Host PC in use.
-On the network there are active Firewall
 or routers that block the access to the
 Controller.

-Refer to the data-sheet of the Controller
 in use and verify the relative Technical
 Specifications.
-Verify the parameters of the Ethernet
 interface of the Host PC.
-Call the System Administrator in order to
 connect the controller to the network.

Dev9K

Pag. 38<< INDEX

EVENT POSSIBLE CAUSES POSSIBLE SOLUTIONS

The function “Search” doesn't find any
Slave device.

-There are not slave devices connected .
-The slave devices are not correctly
 connected.
-The Controller which the slave devices
 are connected to has not been selected.
-The Modbus addresses of the slave
 devices connected are not included in the
 range set in the System Register %R17
 (Gateway Mask) or in the range set in the
 menu “Search”.
- The baud-rate of the Slave devices
 connected is not the same of that set for
 the Master port of the Controller.
-The Timeout values are not correct.

-Refer to the data-sheets of the slave
 devices in use and verify the relative
 Technical Specifications.
-Verify that the Controller selected is the
 same which the slave devices are
 connected to.
- Verify the correspondence between
 settings and Modbus addresses of the
 slave devices.
-Verify the values of Gateway Mask.
-Control the baud-rate and delay time of
 the slave devices connected.

The data saved as constant in the
Register table, are not saved when the
Controller is switched off.

- The data have been saved in General
Purpose Registers instead of Retentive
Registers .

-Save the constant values in Retentive
Registers.

The Web Pages haven't been loaded. -The IP address written in the address bar
 of the Internet browser is not the same of
 Controller's IP address.
-The Controllers connected by Ethernet
 port has been set with communication
 parameters not compatible with the
 Ethernet interface of the Host PC in use.
-On the network are active Firewall or
 Routers that block the access to the
 Controller

-Verify the IP address written in the
address bar.
-Verify the parameters of the Ethernet
interface of the Host PC.
-Call the System Administrator in order to
connect the controller to the network.

The functions Clock and Calendar
(where foresee) don't work correctly.

-Battery low or absent.
-Clock and Calendar parameters not
 correctly set in the proper Registers

-Change or insert the battery.
-Control the parameters of the System
 Registers (refer to the sections 3.3 and
 3.4).

8. Error messages and Troubleshooting

Dev9K

Pag. 39<< INDEX

1. Introduction

2. E-mail configuration by DAT9000 web page

This Application Note shows how to send an e-mail on event or with a specific timestamp. The e-mail that is sent
uses port 25 without encryption. It is possible to send one and only one e-mail. The message is written in the
body of the email and can contain a fixed string of characters, numerical variables or the composition of one or
more strings together with the variables.
Furthermore, it is also possible to add blocks of text.

Once logged in by entering the correct username and password, the DAT9000 HomePage will appear.
By clicking on the "Email Configuration" button it is possible to access the e-mail setup page.

- Mail Address

From: e-mail address that uses port 25 without encryption (if not already available, it is necessary to create a
compatible account).
To: final destination e-mail address (can be any type of account).
Cc: e-mail address of recipients in "Knowledge Copy" (can be any account).

9.1 – E-MAIL CONFIGURATION

- Message

Subject: subject of the e-mail.

Body: body or message to send. The variables #XXX, the strings $YYY and the blocks of text *ZZZ are defined
through the Dev9k respectively in the "Variables", "String" and "Text" windows. In the "Variables" window an
internal register of the DAT9000 is associated with a format variable #XXX. In the "String" window it is possible to
associate a string of characters with the format $ YYY. In the "Text" window it is possible to associate to the *ZZZ
format a text longer than a simple string.

9. Application Note

Dev9K

Pag. 40<< INDEX

Server Config
In this area configure the outgoing mail server that uses port 25 without encryption.

SMTP Server: is the outgoing mail server. It depends on the outgoing mail account's domain.
This data can be easily found on the net (in the example, the outgoing mail account is on “Libero”).

SMTP Port: is the port that is used by the outgoing mail server (in our case, port 25).

User: outgoing mail account.

Password: password of the outgoing mail account.

Click on "Save" to save the changes of the entire page.

It is possible to send a test email after saving the changes by clicking on the "Test" button at the bottom left.

3. Configuration of e-mail timestamp in the Dev9k software

The email configured via the web page can be sent on an event (the event is associated to a bit) or with a well-
defined timestamp (every hour, every day every 10 minutes, etc.).
To define this it is necessary to insert the "Mail" field through the Dev9k by accessing the Tools → Scheduler and

At this point the following window will appear:

9. Application Note

Dev9K

Pag. 41<< INDEX

In the "Trigger" tag it is possible to set the event or the timestamp to send the e-mail.
Therefore there are two possibilities to send an e-mail, "by Time" or "on Event".

- By selecting the "Time" checkbox, the e-mail will be sent "by Time" ie periodically
 regardless of the status of any bit.
 The timestamp is set through the drop-down menu and the relative input field (Pict.. A).
 In the example, the e-mail will be sent automatically every 10 minutes.

- By selecting "Trigger", the e-mail is sent in relation to an "Event". That can be related to
 the change of the status of a given bit, that belongs to a specific register (Pict. B). It is
 possible to select which status change generates the sending of the e-mail, ie sending on
 the rising edge of the bit (from 0 → 1) or on the falling edge of the bit (from 1 → 0).
 If "Trig reset" is flagged when the rising edge, when the e-mail is sent, the bit that has
 generated the event of sending e-mail is automatically resetted.
 In the example, the e-mail will be sent every time the bit 8 of the register 8 changes
 from 0 to 1 (on the rising edge). Having also selected the "Trig Reset" option, bit 8 of
 register 8 automatically resetted as soon as the e-mail is sent.

At the end of the parameter setting, click “Save” to save.

Pict. A

Pict. B

4. Setting variables, strings and text blocks in the Dev9k software

Variables #XXX, strings $YYY and text blocks *ZZZ can be inserted in the body of the mail and be defined in the
Dev9k software.

To access the variable definition window, click on Tools on the menu and then on Variables:

- Variables

Through this window it is possible
to associate the ID (#XXX) that
will be written in the body of the
mail to a predefined variable
(Date and Time) or an internal
register of the DAT9000. To
enter the variables, select the line
and modify the parameters in the

Repeat the operation for all the
desired variables.

After entering and editing the
OK to

It is also possible to use the "Create New" button which allows the user to enter the e-mail through a wizard.

9. Application Note

Dev9K

Pag. 42<< INDEX

Through this window it is
possible to associate the ID
($YYY) that will be written in
the body of the email to a string
of characters that can identify
an alarm or any event. To enter
the string, select the ID, write in
the dedicated space and click
on

Repeat the operation for all the
desired strings.

After entering and editing the
OK to

- Strings

- Text Blocks

Through this window it is
possible to associate the ID
(*ZZZ) that will be written in the
body of the email to a text.
Enter the desired text in the

It is possible to insert variables
and strings either by writing
the ID directly in the body of
the text or by choosing from
the drop-down menus relative
to the IDs.

Repeat the operation for all the
desired text blocks.

After entering and editing the
OK

9. Application Note

Pag. 43<< INDEX

Datexel s.r.l. reserves its rights to modify its products totally or in part without notice at any time. ED. 0618

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43

