

Signal Condititioner with Trip Amplifier

FEATURES

- Universal Analogue Input
- Relay Outputs: 2 SPDT + 2 SPST (version with 4 thresholds)
- Relay Outputs: 2 SPDT (version with 2 thresholds)
 One V/mA Analogue Output for signal transmission
- 1500 Vac galvanic isolation on all ways
- High Accuracy
- CE / UKCA Mark
- DIN rail suitable mounting (EN-50022)

Contraction of the local division of the loc

DAT 50

GENERAL DESCRIPTION The DAT 5028 device is able to acquire RTD or Tc sensors, mV, V or mA input signals connected to the universal analogue input. By means of push-button and 4-digit display on the front panel, four different trip alarms are configurable. Each alarm threshold commands an output relay. Input signal can be retransmitted on the analogue output in a Voltage or Current signal, configurable by means of dip-switch on the side of the device.

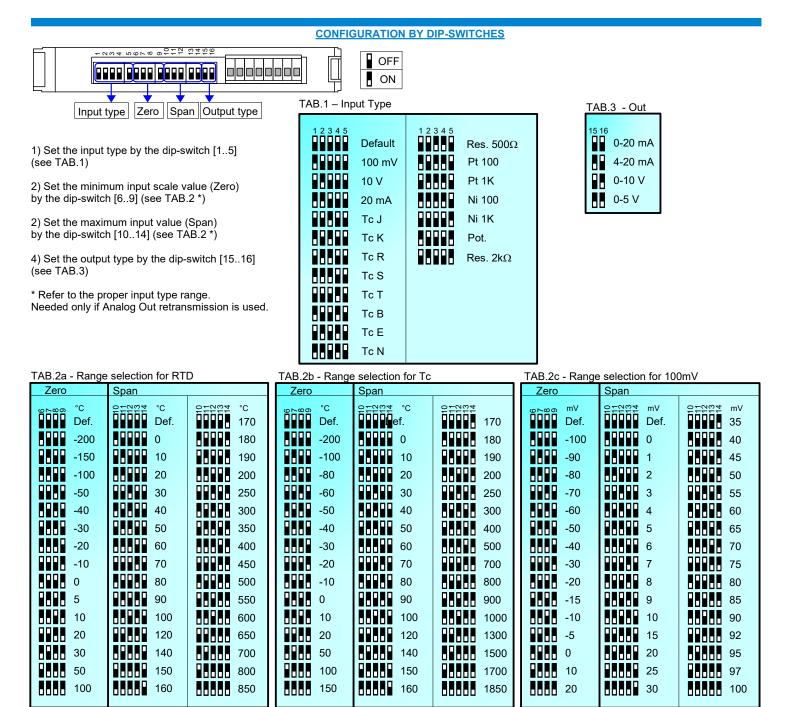
By means of an internal 16 bit converter, the device guarantee a high accuracy and a stable measure versus time and temperature. The 1500 Vac isolation on all ways removes eventual ground-loop effects, allowing the use of the device even in the heavy environmental conditions. In function of the number of thresholds necessary to the user, the device can be supplied in two different versions: DAT5028-4 with 4 thresholds (2 SPDT + 2 SPST);

DAT5028-2 with 2 thresholds (2 SPDT).

The device is housed in a rough self-extinguishing plastic container which, thanks to its thin profile of 22.5mm only, allows a high density mounting on EN-50022 standard DIN rail.

USER INSTRUCTIONS

Before to install the device, please read the "Installation Instruction" section.


Connect power supply, analogue input, relay outputs and analogue output as shown in the "Wiring" section.

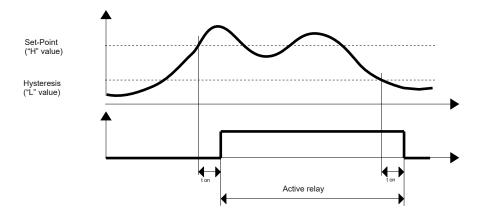
In normal conditions, the display must always show a value.

To simplify handling or replacing of the device, it is possible to change configuration or remove the wired terminals even with the device powered.

TECHNICAL SPECIFICATIONS (Typical @ 25 °C and in the nominal conditions)

INPUT			OUTPUT			GENERAL SF	GENERAL SPECIFICATIONS		
Input Type	Min	Max	Output type	Min	Max	Supply Voltage	12 30 Vdc		
TC (CJC int./ext.)			Current	0 mA	20 mA	Rev. Polarity protectio			
J	-200°C	1200°C	Voltage	0 V	10 V	Current consumption			
К	-200°C	1370°C	Accuracy (2)	± 0	.1 % f.s.		@ 24Vdc 120 mA max		
R	-50°C	1760°C	Linearity (2)		.05 % f.s.	Current consumption	200 mA max		
S	-50°C	1760°C	Thermal Drift (2)	± 0	.01 % / °C	ISOLATIONS			
В	400°C	1825°C	Aux. Voltage	>1:	2V @ 20 mA	(among all of the ways	s) 1500 Vac,		
E	-200°C	1000°C	Out of scale valu	es	-		50 Hz, 1 min		
Т	-200°C	400°C	Max Out value		mA or 11 V	ENVIRONMENTAL C	ONDITIONS		
N	-200°C	1300°C	Min Out value		nA or -0,6 V	Operative temperature			
Voltage	100 11	. 400 . 14	Load resistance -			Storage temperature	-40°C +85°C		
mV	-100 mV	+100 mV	Current:	≤	500 Ω	Relative humidity (not			
Volt	-10 V	+10 V	Voltage:		5 ΚΩ	Maximum Altitude	2000 m		
RTD (2, 3 wires)	00000	05000	Short circuit currer	nt 30	mA max	Installation	Indoor		
Pt100	-200°C -200°C	850°C	Response time (1	0÷ 90%) 40) ms	Category of installation	n II		
Pt1000 Ni100	-200 C -60°C	200°C 180°C				Pollution Degree	2		
Ni1000	-60°C	150°C	DIGITAL OUTPUT	rs		MECHANICAL SPEC	IFICATIONS		
	<u>0 Ω 0</u>	500 Ω	N.2 SPST Relays + N.2 SPDT Relays				Self-extinguish plastic		
RES. (2, 3 fili)	0Ω	2000 Ω	IN.2 SPST Relays	TN.2 SPDIN	elays		IP20		
Pot. (Rnom < 50KΩ)	0.02	100 %	Max Load (resisti	ve) 2A(@ 250 Vac		wires with diameter		
, , ,					0,30 Vdc		0.8÷2.1 mm ² /AWG 14-18		
Current	-20 mA	+20 mA	Max Voltage		/ac (50 / 60 Hz) ,		0.8 N m		
Accuracy (1)			110 Vdc		Mounting in compliance with DIN				
mV, Volt, mÁ	± 0.05 % f.s.		Dielectric strength				rail standard EN-50022		
Pot, RTD, Res.	± 0.05 % f.s		Ŭ		Vac, 50 Hz, 1 min	. Weight a	about 150 g.		
TC	> ± 0.05 % f.s.	o 5 uV	Dielectric strength	between coil a	ind contacts	CERTIFICATIONS			
Linearity (1)			-	4000	Vac, 50 Hz, 1 mil	¹ EMC (for industrial e	nvironments)		
mV, Volt, mA	± 0.05 % f.s.					Immunity	EN 61000-6-2		
Pot, RTD, Res.	± 0.1 % f.s					Emission	EN 61000-6-4		
TC	± 0.2 % f.s.					UKCA (Rif S.I. 2016 N			
Input impedance	10.140					Immunity	BS EN 61000-6-2		
TC, mV	10 MΩ					Emission	BS EN 61000-6-4		
Volt	1 MΩ								
mA Line resistance inf	~22 Ω								
TC. mV	<=0.8 uV/Ohm								
RTD 3 wires $0.05\%/\Omega$ (50 Ω max balanced)									
Sensor excitation									
RTD,Res	700 uA								
CJC Comp.	± 1°C								
Thermal Drift (1)									
Full Scale	± 0.01% / °C								
CJC	± 0.02% / °C		(1) referred to input spar	n (difference betwee	n max. and min. values);			
Aux. Voltage	>18 V @ 20 m	A	(2) referred to output spa			,.			
			values)						

TAB.2d - Range selection for mA	TAB.2e - Range selection for Pot.	TAB.2f - Range selection for 10 V
Zero Span	Zero Span	Zero Span
© ►∞∞ mA 25 ₩ 2 mA 25 ₩ 2 mA 25 ₩ 2 mA 25 ₩ 2 mA 13.0	% %	φ ⊨ ∞∞ ∨ φ ⊑ ∞∞ ∨ φ ≡ ∞∞ <
		9.0 9.0 0.1 4.5
2.0 6.0 15.0	20 15 95	-8.0 0.2 5.0
2.5 2.5 6.5 15.5	25 26 20 100	•••••••••••••••••••••••••••••••••••••
3.0 3.0 7.0 16.0	30 25	-6.0 0.4 6.0
3.5 7.5 16.5		
4.0 8.0 17.0	40 35	-4.0 0.6 7.0
5.0 9.0 18.0	50 45	
	55 50	
6.0	60 55	
		-0.5
		0 2.0 9.5
		1.0 2.5 9.7
8.0 12.5 20.0	80 75	2.0 3.0 10.0


TAB.2g - F	Range	selection	for	Res	500Ω.
------------	-------	-----------	-----	-----	-------

TAB.2h - Range selection for Res $2k\Omega$

Zero	Span		Zero	Span	Span			
ωρωσ Ω	07004 Ω	01004 0	w ⊳∞on Ω	0 <u>-0</u> 007 Ω	Ω 11110			
Def.	Def.	220	Def		1250			
o e e e e	10	240	O PERSON	500	1300			
10	20	260	50	550	1350			
20	30	280			1400			
30	40	300		650	1450			
40	50	320	200		1500			
50	60	340	250	750	1550			
60	70	360	300		1600			
70	80	380	350	850	1650			
80	90	400	400	900	1700			
90	100	420	450	950	1750			
100	120	440	500		1800			
120	140	460	550	1050	1850			
140	160	480	600		1900			
150	180	490	650	1150	1950			
200	200	500		0 1200	2000			

TRIP OPERATION MODE

The relay goes on when the input signal is higher than the set-point level for at least the delay time "t on" (ms). The relay goes off only when the input signal is lower than the hysteresis value for at least delay time.

INSTALLATION INSTRUCTIONS

The device is suitable for fitting to DIN rails in the vertical position. For optimum operation and long life follow these instructions:

When the devices are installed side by side it may be necessary to separate them by at least 5 mm in the following case: - If panel temperature exceeds 45°C and at least one of the overload

conditions exist.

Make sure that sufficient air flow is provided for the device avoiding to place raceways or other objects which could obstruct the ventilation slits. Moreover it is suggested to avoid that devices are mounted above appliances generating heat; their ideal place should be in the lower part of the panel. Install the device in a place without vibrations.

Moreover it is suggested to avoid routing conductors near power signal cables (motors, induction ovens, inverters etc...) and to use shielded cable for connecting signals.

CONFIGURATION CONTROL

The configuration of the device can be checked by means of the push buttons and the 4-digit display on the front side of the device.

In normal operation, the display shows the actual value of the analog input.

To enter in the view mode, follow the next procedure:

1) press the "ESC" button : it will be displayed the label "In"

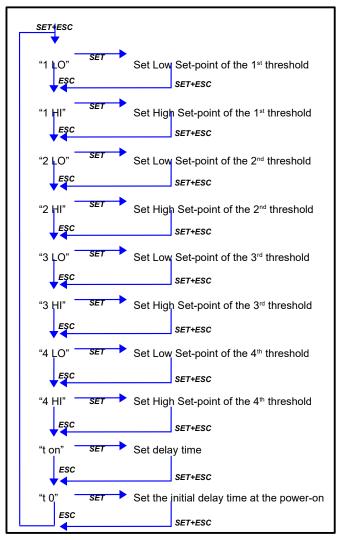
2) press the "ESC" button again, it will be displayed the input type value (see tab.4).

3) Keep to press the "ESC" button to visualize all of the setting values of the device (follow the next list:

٦

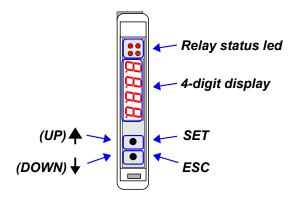
€¢C	TAB.4 – Input	Туре
" W "		
Shows Input type value (see tab.4)	100 mV 10 V	1 2
ESC "LO"	20 mA	2
ESC	TcJ	4
Shows Low Set-point of the 1 st threshold ESC	Tc K	5
"1 HI" ESC	Tc R	6
Shows High Set-point of the 1 st threshold	Tc S	7
ESC "1 LO"	Tc T	8
ESC	Tc B	9
Shows Low Set-point of the 2 nd threshold ESC	Tc E	10
"2 HI" ESC	Tc N	11
Shows High Set-point of the 2 nd threshold	Res 500Ω	12
≚ESC "3LO"	Pt 100	13
ESC	Pt 1K	14
Shows Low Set-point of the 3 rd threshold ESC	Ni 100	15
" <u>3</u> HI"	Ni 1K	16
ESC Shows High Set-point of the 3 rd threshold	Pot	17
● ESC "4 LO"	Res 2kΩ	18
ESC Shows Low Set-point of the 4 th threshold ESC "4 HI"		
<i>Esc</i> Shows High Set-point of the 4 th threshold <i>Esc</i> "In L"		
ESC Shows Low value of the input range ESC "In H"		
ESC Shows High value of the input range		
"OutL" Esc Shows Low value of the output range Esc		
"OutH" <i>Esc</i> Shows High value of the output range		
Esc "Qut"		
ESC Shows Output type (0=current, 1=voltage) ESC		
<i>ESC</i> "t _o n" <i>ESC</i> Shows the delay time for the thresholds		
t ₀ ^{esc}		
ESC Shows the initial delay time at the power-on ESC		
4) To exit from the view mode don't press any device will automatically visualize the actual input		: the

THRESHOLD CONFIGURATION


To configure the threshold values press both the buttons ("SET"+"ESC") for at least 5 seconds.

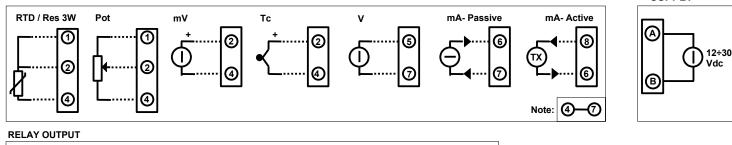
1) Press the button "ESC" to scroll through to the list until the desired 2) Press the button "SET" to confirm the selection of the parameter;

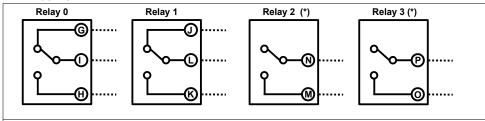
the display shows the value currently programmed.


3) Press the button "UP" or "DOWN" to modify the value: keeping pressed the button "UP" or "DOWN" to increase the speed of variation of the numbers

4) When the desired value has been reached press both the buttons for at least 4 seconds. Don't press any button for 5 second to discard the changes.

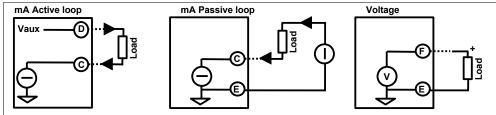
5) Repeat the step from 1 up to 4 for each parameter to be configured.

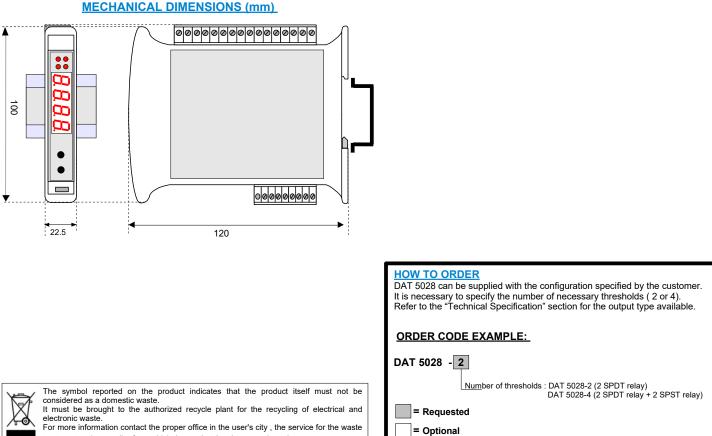

To exit from the threshold configuration don't press any button for 5 seconds: the device will automatically visualize the actual input measure in function of the programming made.



ANALOGUE INPUT

WIRING


SUPPLY


Note: the relay 2 and 3 are available only for the version with 4 thresholds (DAT5028-4)

ANALOGUE OUTPUT

LIGHT SIGNALLING

LED	COLOUR	STATE	DESCRIPTION	
Rn	RED	ON	Relay [n] excited	
		OFF	Relay [n] released	

For more information contact the proper office in the user's city , the service for the waste treatment or the supplier from which the product has been purchased.

